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Abstract

In a Multi-Variant Execution Environment (MVEE), several slightly different versions
of the same program are executed in lockstep. While this is done, the environment
compares the behavior of each version at certain synchronization points with the aim
of increasing resilience against attacks.

Traditionally, the monitoring component of MVEEs has been implemented as an
OS kernel extension, which monitors the behavior of the different instances of the
application from inside the kernel. As a result, the monitor becomes a part of the
trusted code base for the entire system, greatly increasing the potential repercussions
of vulnerabilities in the monitor itself.

We describe a MVEE architecture in which the monitor is implemented entirely in
user space, eliminating the need for kernel modifications. We have implemented a fully
functioning MVEE based on the proposed architecture and benchmark numbers show
that the performance penalty of the MVEE on a dual-core system averages about 20%
relative to unprotected execution without the MVEE.



1 Introduction

Despite major efforts by software vendors to secure networked desktop and server sys-
tems, and despite many years of research and development of tools for detecting se-
curity vulnerabilities at different phases of application development as well as runtime
vulnerability detection, viruses, worms and bot nets continue to be the single largest
threat for critical cyber infrastructure. Security vulnerabilities in software permit at-
tackers and their attack vehicles to compromise, take control of and misuse remote
computer systems for various malicious purposes, including theft of electronic infor-
mation, relaying of spam emails, or coordinated distributed denial of service attacks.

The profile of attackers has changed significantly over recent years. The majority
of attacks are no longer committed by high-school teenagers sitting in their parents
basement [29]. Instead, viruses, worms and bot nets are now increasingly used by
well-organized criminal enterprises for financial gain through spam, identify theft and
extortion. This has also changed the pace at which security vulnerabilities are detected.
The large-scale “amateur” attacks of the past quickly caught the attention of anti-virus
companies who documented the underlying vulnerability, permitting software vendors
to address them. Today, knowledge about software vulnerabilities is a valuable com-
modity and is sometimes guarded like a trade secret since it offers a competitive ad-
vantage over competing attackers (i.e., criminal organizations).

Vulnerabilities that allow the injection of malicious code are considered the most
dangerous form of vulnerability since they allow attackers to gain complete control
over the compromised system. An efficient approach to fend off such attacks is multi-
variant code execution [11, 4].

Multi-variant execution protects against malicious code execution attacks by run-
ning two or more slightly different variants of the same program in lockstep. At cer-
tain synchronization points their behavior is compared against each other. Divergence
among the behavior of the variants is an indication of an anomaly in the system and
raises an alarm.

Multi-variant execution is particularly useful for network-facing applications and
servers. Since these have to process input from remote users received over the network
they are common targets for malicious code injection attacks. Running such a network
service (i.e. web server) in a multi-variant execution environment adds an extra layer
of security.

Unlike many previously proposed techniques to prevent malicious code execu-
tion [16, 3, 9], multi-variant execution is a secret-less system. It is designed on the
assumption that program variants have identical behavior under normal execution con-
ditions (“in-specification” behavior), but their behavior differs under abnormal condi-
tions (“out-of-specification” behavior). Therefore, the choice in what to vary, e.g. stack
growth direction or heap layout, has a vital role in protecting the system against differ-
ent classes of attacks. It is important that every variant be fed identical copies of each
input to the system simultaneously. This design makes it impossible for an attacker
to send individual malicious input to different variants and compromise them one at a
time. If the variants are chosen properly, a malicious input to one variant causes col-
lateral damage in some of the other instances, causing them to deviate from each other.
The deviation is then detected by a monitoring agent, which enforce a security policy



and raise an alarm.

Multi-variant execution environments (MVEEs) enables us to duplicate the in-
specification behavior of a program without duplicating the vulnerabilities and its out-
specification behavior. This characteristic helps us build effective monitoring systems
that can detect exploitation of vulnerabilities at run-time and before the attacker has the
opportunity to compromise the system.

An obvious drawback of MVEEs is the extra processing overhead they impose,
since at lease two variants of the same program must be executed in lockstep to provide
the benefits mentioned above. Fortunately, multi-core processors are ubiquitous these
days and the number of cores is increasing rapidly. Quad-core processors already exist
in commodity hardware and Intel has promised 80 cores by year 2011 [14]. At the
same time, there is often not enough extractable parallelism in applications. Even if
there is, limited memory and/or I/O bandwidth usually prevents them from taking full
advantage of these additional cores. MVEEs can engage the idle cores in these systems
to improve security for sensitive applications where performance is not the first priority.
Therefore, MVEE:s are viable solutions and their overhead can be well-worth the extra
security they provide.

In this paper, we present a novel technique to build a user-space MVEE that does
not need any OS kernel modifications. Our MVEE isolates the variants from the op-
erating system and doesn’t allow the variants to directly interact with the kernel. The
rational of this technique is that a program cannot have any interaction with any entity
outside its own process space, unless it makes a system call. As a result, an exploited
program cannot cause any harm to the system or send any information to an attacker
without invoking a system call. Our MVEE monitors system calls and makes sure that
all the variants agree on the system calls and their arguments. In contrast to previous
work, our MVEE is a regular unprivileged application that supervises the execution
of parallel instances of the subject application using the debugging facilities of a stan-
dard Linux kernel. A user-space technique reduces the trusted code base and limits the
overall negative impact of potential implementation errors in the parallel monitor.

The technique introduced in this paper is implemented under Linux, but it should
be applicable to other UNIX-like operating systems with minimal changes.

2 The Monitor

The monitor is the main component of our multi-variant execution environment. It is
the application which is invoked by the user and receives the paths of the executables
that must be run as variants. The monitor creates a child process per variant and starts
execution of the variants. It allows the variants to run without interruption as long as
they are modifying their own process space. Whenever a variant issues a system call,
the request is intercepted by the monitor and the variant is suspended. The monitor then
attempts to synchronize the system call with the other variants. All variants need to
make the exact same system calls with equivalent arguments (explained below) within
a small time window. The invocation of a system call is called a synchronization point.

Our monitor has a set of rules for determining if the variants are synchronized with
each other. If p; to p,, are the variants of the same program p, they are considered to be
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Figure 1: The monitor is a thin software layer on top of the OS kernel that intercepts
all system calls and ensures that all variants always call the same OS functions with
equivalent arguments.

in conforming states if at every synchronization point the following conditions hold:
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where S = {s1, s, ..., s, } is the list of all invoked system calls at the synchro-
nization point and s; is the system call invoked by variant p;.
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where A = {a11,a12,...,amn} is the set of all the system call arguments en-
countered at the synchronization point, a;; is the i** argument of the system call
invoked by p; and m is the number of arguments used by the encountered system
call. A is empty for system calls that do not take arguments. Note that argument
equivalence does not necessarily mean that argument values themselves are iden-
tical. For example, when an argument is a pointer to a buffer, the contents of the
buffers are compared and the monitor expects them to be the same, whereas the
pointers (actual arguments) themselves can be different. Formally, the argument
equivalence operator is defined as:

- if type # buffer : a = b
a=be { else : content(a) = content(b)

with fype being the argument type expected for this argument of the system call.
The content of a buffer is the set of all bytes contained in it:

content(a) := {a[0]...a[size(a) — 1]}

with the size function returning the first occurrence of a zero byte in the buffer in
case of a zero-terminated buffer, or the value of a system call argument used to
indicate the size of the buffer in case of buffers with explicit size specification.

3.Vt €T i t, —ts <w
where T' = {t1, %2, ..., t,, } is the set of times when the monitor intercepts system
calls, ¢; is the time that system call s; is intercepted by the monitor, and ¢, is
the time that the synchronization point is triggered. This is the time that the first
system call invocation is encountered after the last synchronization point. w is



the maximum amount of time that the monitor will wait for a variant. w is spec-
ified in the policy and is application and hardware dependent. For example, on
an n-processor system w may be small because the expectation is that the vari-
ants are executed in parallel and should reach the synchronization point almost
simultaneously. Once w has elapsed, those variants that have not invoked any
system call are considered non-complying.

If any of these conditions is not met, an alarm is raised and the monitor takes an
appropriate action based on a configurable policy. In our current prototype, we termi-
nate and restart all the variants, but other policies such as voting among the variants
and terminating the non-conforming ones are possible.

The mechanism we use for system call monitoring is different from that of conven-
tional system call monitors. In conventional system call monitors [17], it is not possible
to check and verify all the arguments passed to the system calls, especially contents of
buffers written to I/O devices. The reason is that most of these arguments depend on
the inputs given to the program. In order to verify such arguments the monitor must be
able to duplicate the exact program behavior without duplicating the vulnerabilities.

Since our system is running multiple variants of the same program, each resilient
against certain classes of attacks, the MVEE actually duplicates the behavior of the
program without duplicating the vulnerabilities. As a result, our monitor is able to
certify both system calls and their arguments. Therefore, mimicry attacks which are
used to defeat conventional system call monitors (e.g., Parampalli et al. [24]) are not
effective against our MVEE.

The monitor isolates the processes executing the variants from the OS kernel and
monitors all communication between the variants and the kernel. The monitor is imple-
mented as an unprivileged user-space process that uses the process debugging facilities
of the host operating system (Linux) to intercept system calls. This not only simplifies
maintenance as patches to the OS kernel do not need to be re-applied to an updated
version of the kernel, but also makes errors in the monitor itself less severe since the
monitor is a regular unprivileged process as opposed to a kernel patch or module run-
ning in kernel space.

The monitor is a separate process with its own address space and no other process
in the system, including the variants, can directly manipulate its memory space. There-
fore, it is difficult to compromise the monitor by taking control of a program variant.

2.1 System Call Monitoring

A multi-variant environment and all the variants executed in this system must have
the same behavior as that of running anyone of the variants conventionally on the host
operating system. The monitor is responsible for providing this characteristic by per-
forming most of the I/O operations itself and sending the results to the variants. When
the variants try to read some input data, the monitor suspends them, intercepts the in-
put, and then sends identical copies of the data to all the variants. This is not only
required to mimic a single application behavior, but also essential to prevent attackers
from compromising one variant at a time. When each input is sent to the variants, a
malicious input compromises the vulnerable variants while the resilient ones remain in



legal state causing discrepancies among the variants which is detected by the monitor.
Similarly, all output operations are solely performed by the monitor after making sure
that all the variants agree on the output data.

Depending on the system call and its arguments, the monitor determines whether
the variants should run the system call or it should be executed inside the monitor. Sys-
tem calls that generate immutable results (such as reading the kernel version number)
are allowed to be executed by all the variants. If the system call result is not expected to
be the same among all variants (e.g., gettimeofday, getpid) and the system call
does not change system state, the call is executed by the first variant and if it changes
system state, it is executed by the monitor. In both cases, the results are copied to all
other variants.

The monitor is notified twice per system call, once at the beginning of the call and
once when the kernel has finished executing the call and has prepared return values.
After ensuring that the variants have called the same system call with equivalent pa-
rameters, the system call is executed. The pt race implementation of Linux requires
us to perform a system call once a system call has been initiated by a program variant.
However, if the system call is executed only by the monitor, the variants must skip the
call. In this case, the monitor swaps out the system call initially requested by the vari-
ants for a low-overhead call that doesn’t modify the programs’ state (i.e. getpid).
The debugging interface of the OS allows the monitor to do this by changing the reg-
isters of the variant at the beginning of the system call invocation and cause a different
system call to be executed than the one initially requested.

Most of the file operations are performed by the monitor and the variants only
receive the results. When a file is opened for writing, for example, the monitor is the
only process that opens the file and sets the registers of the variants so that it appears to
them that they succeeded in opening the file. All subsequent operations on such a file
are performed by the monitor and the variants are just recipients of the results. This
method fails if the variants try to mmap the file. The file descriptor they received from
the monitor, are not actually opened in their contexts and, hence, mmap would return
an error. This causes a major restriction because shared libraries are mapped using
this approach. We solve the problem by allowing the variants to open files locally if
requested to be opened read-only. This solution solves the problem of mapping shared
libraries, but if a program tries to map a file opened for writing, it will fail. This is still
an open problem, although this happens rarely in programs (i.e. none of our benchmark
applications ran into this issue).

When the mmap system call is used to map a file into the address space of a pro-
cess, reads and writes to the mapped memory space are equivalent to reads and writes
to the file, and can be performed without calling any system call. This allows an at-
tacker to take control over one variant and compromise the other variants using shared
memory. To prevent this vulnerability, we deny any mmap request that can create poten-
tial communication routes between the variants and only allow MAP_ANONYMOUS and
MAP_PRIVATE. MAP_SHARED is allowed only with read-only permission. In practice,
this does not seem to be a significant limitation for most applications.

Operations on sockets and standard I/O are also performed by the monitor and the
variants receive the results. Variants are allowed to create anonymous pipes, but all data
written to the pipes are checked by the monitor and must conform to the monitoring



rules. Named pipes are also created and operated by the monitor and the variants just
receive the results.

Our platform also puts certain restrictions on the exec family of system calls.
These system calls are allowed only if the files that are required to be executed are in
a white-list passed to the monitor. The full path of all executables that each variant is
allowed to execute is provided to the monitor and the monitor ensures that the variants
do not execute any program other than those provided. It is obvious that the variants
and all the executables that they can execute must be properly diversified.

2.2 Monitor-Variant Communication

The monitor spawns the variants as its own children and traces them. Since the monitor
is executed in the user mode, it is not allowed to read to or write from the variants’
memory spaces directly. In order to compare the contents of indirect arguments passed
to the system calls, the monitor needs to read from the memory of the variants. Also,
in order to copy the results of system call execution to the variants, it sometimes needs
to write to their address spaces.

One method to read from the memory of the processes is to call ptrace with
PTRACE_PEEKDATA when the variants are suspended. PTRACE_POKEDATA can sim-
ilarly be used to write to the variants. Because ptrace only returns four bytes at a
time, pt race has to be called many times to read a large block of memory from the
variants’ address spaces. Every call to ptrace requires a context switch from the
monitor to the OS kernel and back, which makes this technique inefficient for reading
large buffers. To improve performance, we create two named pipes (FIFOs) between
the monitor and each variant, one for reading (read-pipe) and one for writing (write-
pipe).

Named pipes are chosen over the anonymous pipes, because anonymous pipes can
be created only between a child process and its parent, but not all the variants in our
system are children of the monitor. In fact, the variants may create new child processes;
these children have different parents and cannot be connected to the monitor through
anonymous pipes. Named pipes work well in connecting these processes to the mon-
itor. The downside of using FIFOs is the higher security risk, since any process can
connect to them and try to read their contents. When we create the FIFOs, their per-
missions are set so that only the user who has executed the monitor can read from or
write to them. Therefore, the risk is limited to the case of a malicious program that is
executed in the context of the same user or a super user. Both cases are possible only
when the system is already compromised.

Connecting to the pipes, as well as reading from and writing to them is not built in
to the applications executed in the MVEE. It is the MVEE that has to force the variants
to perform these operations. The creation of the FIFOs are postponed until they are
needed. They are created by the monitor, but connecting to them has to be performed
by both the monitor and the variants. Our method of forcing the variants to perform
the required operations is based on the fact that the monitor only needs to read from or
write to the address spaces of the variants when they are suspended at a system call.

When the FIFOs are not yet connected, the system call is replaced by open and the
name of the FIFO is also copied to the variant’s address space to create the connections.



For reasons explained below, we do not read buffers less than 160 bytes in length using
FIFOs. The FIFO names selected by the monitor are at most 32 bytes long and will
always fit in the buffers we are trying to read. The buffer used for reading is the same
buffer that is used to store the FIFO name. The monitor reads the first 32 bytes of
the buffer using pt race and stores it. Then the monitor writes the FIFO name to the
beginning of the buffer using pt race. Then the monitor makes the variant run open.
After running open, the first 32 bytes of the buffer is restored and the instruction
pointer is set back to point to the interrupt (system call) instruction so that it will be
executed again and the monitor will receive another chance to replace the system call
by a read or write to the FIFO.

In case the monitor needs to read from the variant after the FIFO connections are
established, the monitor replaces the system call by a write to the read-pipe, giving
it the address of the buffer that the monitor needs to read and its length. The variant is
resumed and the kernel executes the write call and writes the content of the variant’s
buffer to the read-pipe. The monitor is notified after execution of the write and reads
the contents of the buffer from the pipe at once using a single read. Writing to the
variants’ memory is done in a similar way, but the monitor first writes the data to the
write-pipe and then the system call of the variant is replaced by a read from the FIFO
to a desired address with the specified length.

In certain cases, after the original system call has been replaced by a read or
write, it must still be executed by the variant. In this case, the system call and its
arguments are restored from a backup copy taken before the replacement and the in-
struction pointer (EIP in x86) is decremented to point back to the interrupt instruction
(int 0x80 in Linux on x86). Then the variant is resumed and immediately calls the
same system call again. This time, the monitor knows that the arguments are equivalent
and allows the call to be executed by the variant.

Our experiments show that the time spent to transfer buffers using ptrace in-
creases linearly with the buffer size, but it is almost fixed using FIFOs (see Figure 2).
Although this does not mean that using FIFOs is always a better choice. For small
buffers (fewer than 160 bytes in length), pt race is more efficient, while FIFOs are
faster for buffers larger than 160 bytes. For buffer size of 4096 bytes, FIFOs are 16
times faster than pt race (not shown in the figure). Hence, using FIFOs can greatly
improve the monitoring performance for the applications that frequently pass large
buffers to the system calls.

3 Inconsistencies among the variants

There are several sources of inconsistencies among the variants that can cause false
positives in multi-variant execution. Scheduling of child processes and threads, sig-
nal delivery, file descriptors, process IDs, time and random numbers must be handled
properly in a multi-variant environment to prevent false positives.
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Figure 2: Comparison of the performance of transmitting data via a FIFO or ptrace.
Vertical axis shows the amount of time, in seconds, spent to transfer a buffer 200,000
times and the horizontal axis shows the size of the buffer. For buffers whose sizes are
160 bytes or smaller, using pt race to transfer the buffers is more efficient than using
FIFOs.

3.1 Scheduling

Scheduling of child processes or threads created by the variants can cause the monitor
to observe different sequences of system calls and raise false alarm. To prevent this
situation corresponding variants must be synchronized to each other. Suppose p; and
po are the main variants and p; _1 is p1’s child and po_1 is ps’s child. p; and po must
be synchronized to each other and p;_; and ps_; must by synchronized to each other
too. We may choose to use a single monitor to supervise the variants and their children
or we can use several monitors to do so. Using a single monitor can cause unnecessary
delays in responding to their requests. Suppose p; and p, invoke a system call whose
arguments take a large amount of time to compare. Just after the system call invocation
and while the monitor is busy comparing the arguments, p; —; and ps_; invoke a system
call that could be quickly checked by the monitor, but since the monitor is busy, the
requests of the children cannot be processed immediately and they have to wait for the
monitor to finish its first task.

To tackle this problem, whenever variants create new child processes or threads, a
new monitoring thread is spawned by the monitor responsible for the parent. Monitor-
ing of the newly created children is handed over to the new monitor. Figure 3 shows
the hierarchy of the variants and their children and also the monitoring processes that
supervise them. P1 and P2 are the main variants that are monitored by Monitor 1. P1-1
and P2-1 are the first children of the main variants that are monitored by Monitor 1-1
which is a child of Monitor 1 and so on.

As mentioned before, we use pt race to synchronize the variants. Unfortunately,
ptrace is not designed to be used in a multi-threaded debugger. As a result, handing
the control of the new children over to a new monitor is not straight forward. The new
monitor is not allowed to trace the child variants unless the parent monitor detaches
from the variants first and lets the new monitor attach to them. When the parent monitor
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Figure 3: A new monitoring thread is spawned whenever the variants create new child
processes. Monitoring of the newly created children is handed over to the new moni-
toring thread. The dashed lines in the figure, connect parent processes to their children.

detaches from the variants the kernel sends a signal to the variants and allows them to
continue execution normally, without notifying the monitor at system call invocations.
This would cause some system calls to escape the monitoring before the new monitor
is able to attach to the variants.

We solved the problem by letting the parent monitor start monitoring the new child
variants until they invoke the first system call. For example, in Figure 3 the Monitor 1
starts monitoring P1-1 and P2-1 until they call the first system call. Monitor 1 saves the
system call and its arguments and replaces it with a pause system call (sigsuspend
is a better choice in Linux). Then, Monitor 1 detaches from P1-1 and P2-1. The variants
receive a continue signal, but immediately run pause and get suspended. Monitor 1
spawns a new monitoring thread, which would be Monitor 1-1, and passes the process
IDs of P1-1 and P2-1 to it. Monitor 1-1 attaches to the children and restores the original
system call replaced by pause and starts monitoring P1-1 and P2-1 without missing
any system calls.

In a multi-threaded monitor, any monitoring thread may receive signals or events
encountered in any traced process. This means that a thread can receive signals raised
for the processes monitored by other threads. Using wait4 allows each monitoring
thread to receive signals or events raised only in the processes under its supervision.



3.2 Signal Delivery

Asynchronous signal delivery can also cause divergence among the variants, e.g., vari-
ant p; receives a signal and starts executing its signal handler. It calls system call s; in
the signal handler while variant p» has not received the signal yet and is still running
the main program code. It calls another system call which triggers a false-alarm in the
monitor. Therefore, it is essential that the variants receive signals at the same state of
execution.

Whenever a signal is delivered to a variant, the OS notifies the monitor and the
monitor has the option to deliver the signal or ignore it using ptrace. ptrace
also enables the monitor to send arbitrary signals to the variants. Using these two
capabilities, we emulate postponed signal delivery; when a variant receives a signal,
the monitor makes the variant ignore the signal and continue its execution. After all
the variants received the signal and were resumed, the monitor delivers the signal at the
next synchronization point (system call).

Signals that are sent by a program to itself must be handled differently, because
the program’s logic can depend on their delivery at certain points of execution. For
example, consider the following code snippet:

kill (getpid (), SIGTERM);
printf ("ERROR: We should have
never reached here!\n");

The ki1l system call in this example sends SIGTERM to the program running the
code. As mentioned above, the monitor is notified twice per system call. SIGTERM is
received immediately after the monitor resumes the program execution for the second
time after encountering the ki11. Since the monitor can see the system call and its ar-
guments, it knows that the program is sending a signal to itself. Therefore, if the signal
that is received matches the one just sent, the monitor delivers the signal immediately
and does not postpone it until the next system call. Also, SIGKILL, SIGSTOP, and
signals indicating an error, such as SIGSEGV (invalid memory segment access), are
always delivered as soon as they are received.

Postponed delivery solves the asynchronous signal delivery problem and we have
not encountered any issues in running our benchmarks. However, in the case that the
variants execute very long traces of instructions without invoking a system call, signals
will be delivered after a long delay, but not all signals can be delivered arbitrarily late
(e.g., timer signals). Therefore, synchronous signal delivery is still an open problem
and is one of the major challenges in multi-variant execution. We are currently working
on a compiler-driven approach to add artificial synchronization points (other than the
system calls) to the variants so that we can deliver the signals within a small time
window from their reception.

3.3 File Descriptors and Process IDs

As mentioned in the previous section, the monitor allows the variants to open files with
read-only permission. Anonymous pipes that connect the variants to their children
are also created by the variants. The file descriptors assigned to these files or pipes
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are not necessarily the same in different variants and can cause discrepancies among
them. Therefore, the monitor replaces the assigned file descriptors by a replicated
file descriptor and hands this replicated file descriptor to all the variants running the
system call. The monitor keeps a record of the replicated file descriptor and the real
file descriptors assigned to the variants by the OS. When a subsequent system call
that operates on one of these files is encountered, the monitor restores the original file
descriptors before letting the system call execute. As a result, the OS receives the right
file descriptor and operates on the intended file.

A similar approach is taken for process and group IDs. The monitor tracks the Pro-
cess Identifiers (PIDs) of the variants under its control. All PIDs of variants monitored
by a monitoring thread are mapped to a unique value. Whenever a system call that
reads the PID of a variant (getpid) is called, its result is replaced by the unique value
and, consequently, all the variants receive the same PID. System calls that use these
PIDs, such as ki11, are also intercepted before their execution and the real PIDs of
the variants are restored by the monitor. Therefore, the OS receives the correct values
when running the system call. The same approach is taken for the group, parent and
thread group IDs.

3.4 Time and Random Numbers

Time can be another source of inconsistency in multi-variant execution. The solution
for this problem is simple. Whenever a time-reading system call is encountered, the
monitor invokes the same system call and sends the result that it has obtained to the
variants.

Random numbers that are generated by the variants would be different if the vari-
ants used different random seeds. Removing the sources of inconsistencies makes all
the variants use the same seed and generate the same sequence of random numbers.
Reading form /dev/urandom is also monitored. The variants are not allowed to
read this pseudo file directly. The monitor reads the file and sends the result to all the
variants.

3.5 False Positives

We have addressed removing most sources of inconsistency among the variants, but
there are still a few cases that can cause false positives. Although the variants are
synchronized at system calls, the actual system calls are not usually executed at the
exact same time. As mentioned above, files that are requested to be opened as read-only
are opened by the variants. If any of these files is changed by a third application after
one variant has read it and before it is read by the other variants, there is a race condition
and the variants will receive different data which will cause divergence among them.

Another false positive can be triggered if variants try to read the processor time
stamp counters directly, e.g., using the RDTSC instruction available with x86 proces-
sors. Reading the time stamp counters is performed without any system call invocation,
so the monitor is not notified and cannot replace the results that the variants receive.
Using system calls (e.g., gettimeofday) to read the system time solves this prob-
lem, although it has higher performance overhead.
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Applications that try to introspect their memory address space, such as printing the
address of objects on the stack or heap, may trigger a false positive.

4 Reverse Stack Execution

To show the effectiveness of our system, we use two variants that write the stack in
reverse directions. One variant writes the stack conventionally (downward in x86) and
the other one writes in the reverse direction supported by the hardware. The variant
that writes the stack upward is resilient against activation record overwrites. As Fig-
ure 4 shows, when a buffer overflow is exploited, the injected data overwrites the return
address of the function in the conventional variant, but the return address remains in-
tact in the reverse stack variant. This causes the variants to run two different sets of
instructions which will cause divergence and is detected by the monitor.

Multi-variant execution of these two variants also allows us to prevent known stack-
based buffer overflow attacks, including return-to-lib(c) [21, 25] and function pointer
overwrites. Exploited function pointer overwrites are detected, because a function
pointer is located below the vulnerable buffer in one variant and above the buffer in the
other one. The attacker can overwrite one of these two but not both at the same time.
Calling the function that this pointer points to, diverges the execution of the variants and
is detected. However, if there are at least two distinct buffer overflow vulnerabilities on
both sides of the function pointer that both can be exploited before the function pointer
is used, an attacker will be able to hijack both variants. One may add other changes to
one of the variants, such as instruction set randomization [16], to cover these vulnera-
bilities. This imposes a high performance overhead, but it may be worthwhile in high
security sensitive applications. Even very simple instruction set randomization, such as
flipping a single bit of an opcode, can prevent many malicious code execution attacks,
because the injected code is valid only in one of the variants. Note that using instruc-
tion set randomization as the only variation mechanism in multi-variant execution does
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not protect against all code execution attacks, including return-to-/ib(c).

We modified GCC version 4.2.1 [13] to generate variants that write to the stack in
the reverse direction. Modifying the stack growth direction is not trivial and involves
many challenges. The compiler techniques devised for reverse stack growth are beyond
the scope of this paper. Here we present only the stack allocation at program start and
the challenges involved in handling signals in a reverse stack executable. Readers
interested in compiler techniques are referred to [27].

4.1 Stack Allocation

When the stack grows in the reverse direction, it must have enough room to grow.
Otherwise, the program would overwrite data passed by the operating system on the
stack and risk crashing. The default startup code sets the stack for a downward growth
direction and places the program arguments onto it. In the case of an upward growing
stack, we allocate a 6 MB chunk of memory from the heap and use it as the new upward
growing stack. To guard against stack overflows, the last valid stack page is marked as
“not present” using the mprotect system call. If the stack grows beyond the allocated
stack area, an exception is thrown and the application terminates.

One of the challenges in reverse stack manipulation is signal handling. If a signal
handler is defined for a signal, when the signal is raised the kernel sets up a signal
frame, saves the context of the process on the stack, and calls the corresponding han-
dler. Since the kernel expects normal stack growth direction, e.g. downwards in x86,
the context saved by the kernel would overwrite data on a reverse growing stack. To
tackle this problem, we allocate a small block of memory (9KB since the default sig-
nal stack size is 8KB) on the heap and call sigaltstack to notify the kernel that it
must use this memory block as the signal stack to set up the signal frame and save the
process’ context.

The problem is that the handler, which is defined by the programmer, is compiled
for a reverse stack. When the signal rises, the kernel saves the context on the stack
and calls the handler. The handler uses the same signal handling stack and when it
starts execution, the stack pointer is located just below the context saved by the OS
(Shown by arrow 1 in Figure 5). Therefore, a handler compiled for reverse growing
stack could overwrite and destroy the context of the process, causing a crash when the
handler returns.

To solve this problem, we changed the interface to the sigaction system call
in the C library. sigaction registers a new handler for a specified signal number.
We changed the interface to the system call so that whenever it is invoked, the new
interface sets the new signal handler to a wrapper function that we have defined in
the C library. The wrapper function increments the stack pointer to bypass the area
used for saving the process’ context and then calls the user-defined handler. After the
user-defined handler returns, the wrapper decrements the stack pointer to its original
location and returns. Using this method, the saved context remains intact and the kernel
is able to restore it without knowledge of the changes that occurred or the direction of
stack growth that the executable uses.

As mentioned above, we allocate a block of memory to use as the alternative stack.
We pass a pointer close to the beginning of the block (Shown by arrow 2 in Figure 5)

13



Used by
user-defined 8KB
signal hanlders

Address passed to
sigaltstack 2
at start up =

Signal Frame -
Saved by the OS KB

Where the Stack Pointer :\»
points to, after kernel
saves the context

Figure 5: Alternative signal stack used in reverse stack executables. A wrapper function
adjusts the stack pointer to bypass the signal frame saves by the OS kernel.

to sigaltstack. The kernel uses this pointer as the beginning of the alternative
stack and saves the context at this point, writing towards the beginning of the block.
The pointer is set far enough from the start of the block to provide adequate room for
saving the context. After saving the context, our wrapper function increments the stack
pointer to go past the context and uses the rest of the memory block as an upward
growing stack for the signal handler.

4.2 Effectiveness of Reverse Stack Execution

At first glance, it might seem that a reverse stack executable is inherently immune
to stack smashing attacks and there is no need to run a reverse stack executable in a
MVEE. Although a reverse stack executable is resilient against many of the known
stack-based buffer overflow vulnerabilities, it cannot protect against all possible cases.
As an example, consider the following C function:

void foo () {
char buf[100];

strcpy (buf,
user_input_longer_than_buf);

A user input larger than buf can overwrite the return address of st rcpy in the
reverse stack version, since this address is located above the buf on the stack. This is
shown in the right side of Figure 6.

Now compare how effective a reverse stack executable is when it runs alongside a
conventional executable in the MVEE. As Figure 6 shows, exploiting the buffer over-
flow vulnerability in the above code enables an attacker to simultaneously overwrite
the return addresses of strcpy and foo in the reverse and normal executables re-
spectively. Since no system call is invoked between the point that st rcpy returns
and the point that foo returns, the MVEE does not detect any anomaly and lets the
variants continue. Therefore, both variants could be diverted to an address where the
attack code would be stored.
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Figure 6: Buffer overflow vulnerabilities can be exploited to overwrite return addresses
even in an upward growing stack.

Since all inputs are identically given to all the variants, the buffer containing the
attack code would have the same content in both variants. This means that the addresses
used by the instructions in the attack code would be the same in the two variants. For
example, suppose that the attack code includes a call to exec and passes the address
of a small buffer that contains “/bin/sh” to exec. Also, suppose that “/bin/sh”
is the whitelist and allowed by the MVEE. Almost all modern OS kernels randomize
the beginning of the heap and as a result, the addresses of the corresponding buffers on
the heaps of the two variants are not the same. Also, addresses of stack objects are also
totally different. Therefore, the address of this small buffer passed to exec is different
in each variant, but the attack code would have the same address and would fail.

In order to prevent the failure, the attacker would have to divert each variant to
a different address that contains attack code valid for that particular variant. Despite
the fact that a single payload of data is given to st rcpy in both variants, the attacker
could still overwrite the two return addresses with two different values, because the two
return addresses are located at different distances from the beginning of buf. Thus,
a single, properly constructed, input could overwrite both with different values. The
attacker would have to exploit two different buffers: one to store the attack code that
is valid for the first variant, and the other to store the code that is valid for the second
variant. Then the attacker diverts each variant to the appropriate buffer which contains
the correct attack code for the variant. Using multiple buffers to store attack code
during the course of execution would very likely have collateral damage which could
lead to detection. Also it is not likely that all the above conditions exist in a single
program. Moreover, finding all the information about the addresses of the required
buffers is a high barrier to overcome. Therefore, running a normal and a reverse stack
executable in MVEE provides a high level of assurance, although the possibility of
intruding the system still exists.

In very high security sensitive applications, one might want to add other variants to
increase the level of provided security. For example, adding a third variant that uses a
randomized instruction set prevents the above scenario, because the stack layout would
be the same in the conventional variant and the variant with randomized instruction
set. Thus, the return addresses in these two variants would be overwritten with an
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identical value and the attacker would not have the opportunity to redirect every variant
to different attack code. Note that reverse-stack, forward-stack, and instruction set
randomized variants need to be run together to prevent all stack-based buffer overflow
attacks, such as return-to-lib(c).

Another mechanism to defeat these kind of attacks is to use the two reverse stack
and normal executables, but monitor them at finer granularities. For example, one
may want to monitor the variants at every basic block rather than every system call
invocation.

5 Evaluation

To demonstrate the effectiveness of the multi-variant execution environment, we cre-
ated a customized test suite based on known exploits to show the effectiveness at stop-
ping exploit code, common benchmarks, and frequently used applications. This suite
allowed us to evaluate the computational tradeoff in CPU- and I/O-bound operations
and determine the security limitations.

All testing was performed on an Intel 2.33 GHz Dual Core Processor (5140) sys-
tem running Red Hat Enterprise Linux 4 and Linux kernel 2.6.9-55.0.6.ELsmp. All
benchmark applications were run with the highest scheduling priority (nice -20)on
an otherwise unloaded machine.

5.1 Security

MVEE is well-suited for network-facing services, and we used documented past ex-
ploits of Apache 1.3.29 as test vectors. The vulnerabilities and their corresponding
exploits are documented with very specific environments. Details of these environ-
ments include versions of the compiler, operating system, as well as supporting li-
braries. Changes in one or many of these components of the environment can prevent
an exploit from working. As a result, we reconstructed two representative exploits for
Apache in our testing environment, a process that replicated the steps that an attacker
would take.

Both vulnerabilities used for testing are stack-based buffer overflow exploits and
can be exploited using the techniques described in Aleph One’s stack smashing tu-
torial [23]. They were chosen because they are representative of a large number of
stack-based buffer overflow errors that are present in software, and because these ex-
ploits were available publicly and likely to have been used to obtain illicit access to
Apache servers. As a result, these exploits simulate real-world conditions, as it is
likely that other server programs contain similar implementation errors. Finally, these
vulnerabilities were chosen because they are not dependent on third party libraries.

In both cases, when the variants with a downward growing stack were given the
exploit code, the exploits succeeded and the attacker was able to obtain illicit access
to the target computer. When the upward growing stack variant was presented with
the same exploit code, the variant continued to run, since the buffer overflow wrote
into unused memory. When run in parallel and under supervision of our monitor, the
attempted code injection was detected and Apache was terminated.
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Figure 7: Comparison of the performance of variants relative to the conventional execu-
tion of a program without modification. Relative performance of two identical copies
of a program with a downward growing stack (DD execution), a mix of downward
and upward growing stacks (DU execution), and a version of a program compiled for
reverse stack execution (U execution) are shown. DU and DD execution tests were
run in the MVEE, while the U execution tests were run conventionally. Apache (LL)
was benchmarked over the local loopback of the same computer and Apache (net.) is
benchmarked over a gigabit ethernet connection.

In order to defeat our technique, an attacker would need to create two separate
exploits that not only subvert both of the variants without disturbing other variant(s),
but also perform the same malicious operations in sync afterwards. Since any attack
vector requires the use of I/O system calls, an attacker would not be able to subvert
both variants in sequence without passing a synchronization point in between. Hence,
the first subverted variant would need to appear to be operating correctly until the
second one had been subverted as well, and even afterwards, the two malicious versions
would need to be synchronized. Not only is the likelihood very low that any dynamic
instruction sequence executed in any reasonable time interval would contain at least one
separate exploitable vulnerability for each stack direction, but also is the complexity of
creating an exploit that respects all other parameters of our system significantly higher
than that of an unprotected system.

5.2 Performance

The second component of our test suite included tests that are designed to simulate
actions that are commonly done on systems. In order to run these tests, we ported £ind
4.1 and tar 1.12, as well as a MDS5 sum generation program (md5deep 2.0.1-001)
to run in the MVEE, and then measured the performance penalty for these I/O heavy
operations. Although the MVEE concept is targeted towards running security sensitive
or network facing applications, the find, tar, and md5deep are representative of
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I/0 bound applications that might be executed in such an environment.

Disk-based tests were run several times to remove disk caching effects from skew-
ing the results, and then run again several times to collect data. Once the data is col-
lected, the highest and lowest times are discarded and the average of the remaining
times is computed.

Find: find was used as an I/O bound test. In this test, we searched the whole
disk partition of our test platform for all C source code files (files ending in “.c”).
To eliminate effects caused by f£ind printing to the screen, the standard output was
redirected to /dev/null.

Tar: tar was selected as a test to show how the effects the MVEE has on I/O heavy
applications. In this test, we checked out the source code of the Eclipse development
platform and created a tar archive of the data. The source code is composed of many
subdirectories, each of which contains many small text and JAR files. Because of this
property, the tar test is not reduced to a sequential read operation, which would have
occurred if we used a DVD ISO image. The size of the data set is 3 GB.

mdSdeep: md5deep is a program that generates MD5 sums for files and directo-
ries of files. It provides a good mix of I/O and CPU bound operations, as the program
computes the MDS5 sum while reading each file. md5deep was run over two CD ISO
images, totaling 1.5 GB worth of data.

Apache: The same version of Apache that was used for security testing was also
used as a performance test. In order to see what effect the monitor has on Apache, we
used the provided version of ApacheBench [1] to request a 27 KB HTML document.
This was done in two situations. First, ApacheBench was run and requested 100,000
copies of the target document. In the second scenario, ApacheBench requested the
same file 10,000 times from a separate computer connected to the target server via an
unloaded gigabit ethernet connection.

SPEC CPU2000: SPEC CPU2000 [28] is an industry standard benchmark for
testing the computational ability of a system. It is composed of various tools that have
heavy CPU-bound aspects to their design. All of the SPEC tests were used when evalu-
ating the performance of the MVEE, except the FORTRAN and C++ tests, because we
currently only have a C library that operates in the reverse-stack mode. Consequently,
we were not able to generate variants for the C++ and FORTRAN tests to run in the
MVEE.

5.3 Analysis

Figure 7 shows the results of the performance evaluation of the MVEE, which shows
that the monitor imposes an average performance penalty of 22% and 20% for run-
ning both upward and downward growing variants (DU execution) and two downward
growing variants (DD execution) respectively. It also shows that upward-growing stack
variants have an average performance penalty of 2%.

The primary reason why the runtime overhead of reverse stack execution (U exe-
cution in Figure 7) is small is because the difference between downward and upward
growing stack variants is the addition of some ADD and SUB instructions to manage
the stack instead of using PUSH and POP instruction in the upward growing stack vari-
ant. Because these instructions manipulate the stack pointer, they are easily executed in
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parallel with other instructions in the program. Also, because the amount of instruction
level parallelism existing in the benchmarks is not very high, these instructions can be
executed with almost no overhead.

In some cases, such as the SPEC equake test, find, and md5deep, we experienced a
small speedup when the test was run with a reverse stack. This is likely due to the fact
that growing the stack upward better matches the default cache pre-fetching heuristics,
which results in a slightly better cache hit rate and improves overall performance.

When the tests were run in the MVEE (DU execution and DD execution in Figure
7), the results showed that the mostly CPU-bound SPEC tests had little performance
penalty. The two main exceptions to this are gcc and equake, which do make relatively
large amounts of system calls which the monitor must examine.

The I/O based tests (apache, tar, find, and md5deep) experienced a much larger
performance penalty. In the case of apache, the monitor does all of the socket op-
erations and have to examine all the data sent to or received from the network. This
means that all the data have to be transfered from the variants to the monitor, compared
to make sure that they are equal and then sent over the network by the monitor. Also
all the requests from the network are received by the monitor and then copied to all the
variants. This scenario is exaggerated when ApacheBench is run on the same system as
Apache (apache (LL) in Figure 7), because there is no network delay and the requests
and replies are sent over the local loopback of the system. The number of requests per
second is unrealistically high and serving them saturates all the available processing
resources. In this case, the number of requests served per second by Apache running in
MVEE drops significantly compared to Apache running directly on the system. How-
ever, this scenario is unrealistic and an Apache server under such a huge load would be
unusable. To show the effect of the MVEE on Apache in a real environment, the second
Apache test was created to see how Apache performed over the network (apache (net.)
in Figure 7). As seen in the figure, the performance degradation is about 20% which is
affordable in many situations and worth the extra security benefits.

Performance penalty encountered for far is partially due to the monitor examining
the relative path names of over 300,000 files. Moreover, the output of far is a huge
file which is written by the monitor. All data that the variants try to write to the file
must be transfered to the monitor, compared and written to the file only by the monitor.
Similarly, find writes the pathnames of hundreds of thousands of files to the standard
output. Again, the monitor has to transfer these data from the variants, compare them
and write them to the standard output. Other than writing to the standard output, find
also invokes a large number of system calls to traverse directories. All the system
calls and the directory names are controlled by the monitor and cause performance
degradation.

6 Related Work

Software security is extremely important, and hence there is a much larger body of
related work than space constraints permit us to cite. We apologize for the necessity
to select a subset and present the following pioneering earlier work that our research
builds upon:
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The idea of using diversity to improve robustness has a long history in the fault
tolerance community [2]. The basic idea has been to generate multiple independent so-
lutions to a problem (e.g., multiple variants of a software program, developed by inde-
pendent teams in independent locations using even different programming languages),
with the hope that they will fail independently.

Diversity for Security: Along with a rising awareness of the threat posed by an
increasingly severe computer monoculture, replication and diversity have also been
proposed as a means for improving security. As far back as 1988, Joseph and Avizie-
nis [15] proposed the use of n-version programming in conjunction with control flow
hashes to detect and contain computer viruses. McDermott et al. [20] proposed the
use of logical replication as a defense tool in an n-version database setting. Rather
than merely replicating data across databases, they re-executed commands on each of
the replicated databases. This made it much more difficult for an attacker to corrupt
the database in a consistent manner by way of a Trojan horse program—the attacker
would need to independently corrupt each of the variants using a specific Trojan horse.
Cohen [7] proposed the use of obfuscation to protect operating systems from attacks
by hackers or viruses, an idea that has reappeared in many variants. As early as 1996,
Pu et al. [26] described a toolkit to automatically generate several different variants of
a program, in a quest to support operating system implementation diversity. Forrest et
al. [12] proposed compiler-guided variance-enhancing techniques such as interspers-
ing non-functional code into application programs, reordering the basic blocks of a
program, reordering individual instructions via instruction scheduling, and changing
the memory layout. All these are possible strategies of making different instances of
the same program running on multiple host computers more dissimilar from each other.

Chew and Song [6] proposed automated diversity of the interface between appli-
cation programs and the operating system by using system call randomization in con-
junction with link-time binary rewriting of the code that called these functions. They
also proposed randomizing the placement of an application’s stack. Similarly, Xu et
al. [31] proposed dynamically and transparently relocating a program’s stack, heap,
shared libraries, and runtime control data structures to foil an attacker’s assumptions
about memory layout.

Recently, researchers have started to look at providing diversity using simultaneous
n-variant execution on the same platform, rather than merely creating diversity across a
network of computers; our method falls into this category. Cox et al. [11] proposed run-
ning several artificially diversified variants of a program on the same computer. Unlike
our method, their approach requires modifications to the Linux kernel, which increases
the maintenance effort (and related security risks) since patches for the original Linux
kernel need to be integrated with the modified version. They addressed a limited set
of the sources of inconsistencies among the variants and their platform did not support
certain classes of system calls, including “exec” family. They used two simple variance
generation methods based on instruction set variation and address space partitioning.
The classes of attacks covered by these methods are not the same as those prevented
by the reverse stack execution introduced in this paper.

Also closely related, Berger and Zorn [4] proposed redundant execution with mul-
tiple variants that provided probabilistic memory safety by way of a randomized layout
of objects within the heap. Their proposed replicated execution mechanism was limited
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to monitoring the standard I/O. The focus of the work was on reliability (in particular
resilience against memory errors) rather than on attack prevention. Novark et al. [22]
proposed an extension to this technique that found the locations and sizes of memory
errors by processing heap images; it could generate runtime patches to correct the er-
rors. Their system was able to run multiple replicas whose heaps were randomized
with different seeds. Lvin et al. [19] described a related heap protection scheme.

Run-Time Techniques: A large body of existing research has studied the preven-
tion of buffer overflow attacks at run-time through software only [18, 30]. Several
existing solutions were based on obfuscating return addresses and other code and data
pointers that might be compromised by an attacker [5]. The most simple of these used
an XOR mask to both “encrypt” and “decrypt” such values with low overhead before
storing them in a location where the data was vulnerable. PointGuard [8] engaged the
compiler in preventing buffer overflow attacks. For every process running on the ma-
chine, a different random key was stored in a protected area of memory. Every pointer
was then XORed with this random key. Unfortunately, it was relatively easy to cir-
cumvent this simple pointer obfuscation. An alternative solution that didn’t use pointer
obfuscation was the approach taken by StackGuard [10]. Here, an extra value called a
canary was placed in front of the return address on the stack. The assumption was that
any stack smashing attack that would overwrite the return address would also modify
the canary value, and hence checking the canary prior to returning would detect such
an attack.

Unfortunately, all of these safeguards could be circumvented. For example, an
XOR encrypted key could be recovered trivially if an attacker had simultaneous access
to both the plain-text version of a pointer and its encrypted value. In the case of a return
address on a stack, this was usually the case.

7 Conclusions and Outlook

We presented a new technique to build multi-variant execution environments that does
not require any kernel modifications. The MVEE runs as an unprivileged user space
process, reducing the potential negative repercussions of risk of programming errors in
building the MVEE. Many challenges in development of such environments, including
how to deal with sources of inconsistencies among the variants, were addressed and
mechanisms to improve performance of the MVEE were proposed.

Our results show that deploying the MVEE on parallel hardware provides extra
security with modest performance degradation. While existing MVEE approaches re-
lied on modifying the OS kernel, our method uses user-space techniques to create the
perception of a virtual OS kernel without actually requiring changes to the OS kernel
proper. We have shown that the performance overhead for this approach is acceptable
for many applications, in particular considering the beneficial effect of not having to
modify kernel code.

Many everyday applications are mostly sequential in nature. At the same time,
automatic parallelization techniques are not yet very effective on such workloads. Even
in parallel applications, such as web servers, limited I/O and/or memory bandwidth
prevents us from putting all available processing resources into service. As a result,
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parallel processors in today’s computers are often partially idle. By running programs
in MVEEs on such multi-core processors, we put the parallel hardware in good use and
make the programs much more resilient against code injection attacks.

As far as future work is concerned, we are interested in ways to repair corrupted

instances instead of having to terminate them. Such a system could then automatically
quarantine, re-initialize, and resume processes that have become corrupted.
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