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Abstract
The number and complexity of software attacks is
increasing. This growth necessitates proper defense
mechanisms. Intrusion detection systems have an im-
portant role in detecting and disrupting attacks before
they can compromise software. Multi-variant execution
is a technique that runs multiple variants or versions of
a program and looks for divergences in their execution
behavior. A divergence in behavior is an indication of an
attack. Unfortunately, it could also be a false positive.
Asynchronous signals are one the main sources of false
positives. We present a novel solution which removes
false positives generated by signals.

Our system runs variants of a program in parallel.
These variants are run under the supervision of a moni-
tor. When a signal is sent to one of the variants, the mon-
itor intercepts it and synchronizes its delivery to all the
variants. Our experimental results show negligible per-
formance degradation in real applications. By creating
a realistic solution and removing an important source of
false positives, we have increased the accuracy of multi-
variant intrusion detection systems.

1 Introduction
Despite major endeavors by software vendors to elim-
inate software vulnerabilities, and in spite of substan-
tial research efforts by the scientific community to build
tools that automatically find such vulnerabilities, most
large software distributions contain residual exploitable
programming errors. Security vulnerabilities in soft-
ware permit attackers to compromise and misuse remote
computer systems for various malicious purposes, in-

cluding theft of electronic information, relaying of spam
email messages, or coordinated distributed denial of ser-
vice attacks.

Despite the fact that the majority of attack vectors
rely on highly specific properties of the victim systems
and often are not portable, attackers succeed in compro-
mising a large number of systems because these systems
share the same features. This problem is made worse by
the fact that many of them use the same underlying in-
frastructure, including hardware and operating system.

Multi-variant program execution [3, 5, 8, 15, 19] is a
technique to fight IT monoculture by systematically in-
troducing variations. In this technique, a few variants
of the same program are executed in parallel and their
behavior is monitored. Any divergence in the behav-
ior of the variants raises an alarm. Variants of a pro-
gram are executables compiled from the same source
code, but have different characteristics. The variants are
built to have identical behavior under normal execution
conditions (in-specification behavior). However, their
behavior differs when under attack, causing detectable
differences in out-of-specification behavior.

Many different variation techniques have been pro-
posed in the last years. Memory layout randomiza-
tion [9], address space randomization [13, 21], instruc-
tion set randomization [2, 12], system call randomiza-
tion [6], reversing the stack direction [18], and obfusca-
tion of data pointers [4] are examples of variation tech-
niques. Note that running just one variant instead of the
original application is not sufficient in many conditions
because the attacker may still guess the randomized pa-
rameters using a brute force attack or other methods.

However, when several of these variants are executed
simultaneously using the multi-variant execution tech-
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nique, the complexity of attacks increases exponentially
because all variants must be compromised simultane-
ously. It is not possible to compromise the variants one
by one because this would result in diverging behavior
of the variants. Every variant receives identical copies
of each input to the system simultaneously. This de-
sign makes it impossible for an attacker to send indi-
vidual malicious input to different variants. If the vari-
ants are chosen properly, a malicious input to one vari-
ant will cause collateral damage in some of the other
variants, leading to additional divergence between the
variants. The divergence will be detected by a monitor-
ing agent, which compares the behavior of the variants
against each other at certain synchronization points and
enforces a security policy.

Multi-variant execution imposes extra computational
overhead, since at least two variants of the same pro-
gram must be executed in lockstep to provide the ben-
efits mentioned above. Fortunately, multi-core proces-
sors are ubiquitous these days and the number of cores
is increasing rapidly. Quad-core processors already ex-
ist in commodity hardware and Intel has promised 80
cores by 2011 [10]. At the same time, there is often not
enough extractable parallelism in the majority of appli-
cations in use today. Multi-variant execution is a good
use of the extra processing units: the variants can use
the idle cores in these systems to improve security for
sensitive applications or programs that are particularly
prone to attack, e.g., Internet-facing services.

Although the variation techniques are well studied
and the computational power is available, multi-variant
execution is still not used in production environments.
One reason for this is the high rate of false positives
resulting from internal conditions in the system that
cause divergence. Particularly, events that are raised
asynchronously to the normal control flow lead to false
alarms. The most prominent example for these events
are signals sent to the application by the operating sys-
tem. For example, timer signals can be used to intercept
normal program execution and to perform periodic tasks
in an application. Even though the same signal is sent to
all variants, slight timing differences and scheduling de-
lays usually cause the signal to be delivered at different
points in the execution flow of different variants. The
monitor cannot distinguish this behavior from an attack
and therefore reports it as a false positive.

This paper solves the problem of asynchronous sig-
nal delivery for multi-variant execution. We present an
algorithm to synchronize the signal delivery. The mon-
itor intercepts all signals sent to the variants and then
delivers it synchronously to all of them. Our solution is
integrated with the monitoring for divergence, which is

performed at the granularity of system calls. Therefore,
our solution guarantees that a signal is delivered to all
variants between the same two system calls. However,
the basic algorithm can be used to synchronize at an ar-
bitrary granularity. We believe that this is an important
step towards the usability of multi-variant execution in
production environments. In particular this paper con-
tributes the following:

• We present a novel solution to deliver asyn-
chronous events synchronously to multiple vari-
ants.

• We evaluate our algorithm and show the worst-
case overhead in a setting where an artificially high
number of signals has to be delivered.

Section 2 briefly presents the synchronization and
monitoring technique that we use in our monitor. Sec-
tion 3 describes our synchronous signal delivery mech-
anism. Section 4 demonstrates the technique we used to
verify our synchronous signal delivery mechanism and
provides empirical results. Section 5 presents the related
work and Section 6 concludes the paper.

2 Synchronization and Monitoring
Multi-variant execution is an effective monitoring
mechanism that controls states of the variants being ex-
ecuted on top of it and verifies that the variants have
not diverged from each other. A monitoring agent, or
monitor, is responsible for performing the checks and
ensuring that no program instance has been corrupted.
This can be achieved at varying granularities, ranging
from a coarse-grained approach that only checks that
the final output of each instance is identical all the way
to a potentially hardware-assisted checkpointing mech-
anism that periodically compares the registers and mem-
ory state of each variant to ensure that they still execute
semantically equivalent instructions in lockstep.

In our prototype system, we choose granularity of
system calls. Our monitor assumes that the variants exe-
cute semantically equivalent code as long each instance
calls the same system call with equivalent arguments.
It allows the variants to run without interruption when
they are modifying their own process space because this
cannot cause effects to the outside. Whenever a vari-
ant issues a system call, the request is intercepted by the
monitor and the variant is suspended. The monitor then
attempts to synchronize the system call with the other
variants. All variants need to make the exact same sys-
tem calls with equivalent arguments within a time win-
dow.
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Figure 1: The monitor is a thin software layer on top
of the OS kernel that checks behavior of the variants
running on top of it and makes sure that they do not
diverge from each other. Our user space monitor allows
conventional applications run normally on the system
and in parallel with the monitor.

Note that argument equivalence does not necessarily
mean that argument values are identical. When an argu-
ment is a pointer to a buffer, the contents of the buffers
are compared and the monitor expects them to be the
same, whereas the pointers themselves can be different.
Non-pointer arguments are considered equivalent only
when they are identical. Salamat et. al [19] detailed the
system call monitoring in multi-variant execution. We
use the same mechanism in our monitor.

Our monitor is an unprivileged user-space process
that does not need any OS kernel modifications to work.
We use the debugging facilities of the host operating
system (Linux) to implement the monitor. This not
only simplifies maintenance as patches to the OS ker-
nel do not need to be re-applied to an updated version
of the kernel, but also makes errors in the monitor it-
self less severe since the monitor is a regular unprivi-
leged process as opposed to a kernel patch or module
running with kernel privileges. Moreover, this architec-
ture allows conventional programs to run on the operat-
ing system without engaging the multi-variant monitor
(see Figure 1). The user of such a system may choose
to run security sensitive applications on the monitor and
run other applications conventionally.

2.1 System Call Execution

As mentioned previously, the system calls invoked by
the variants are intercepted by the monitor and checked
to make sure that they are complying to the multi-variant
execution conventions. After making sure that the sys-
tem call is legitimate, the monitor decides whether it
should be executed by the variants or by the monitor.

We examined the system calls of the operating sys-

tem one by one and considered the range of possible
arguments that can be passed to them. Depending on
the effects of these system calls on the system and their
results, we specified which ones can be executed by the
variants and which ones should be run by the monitor.
The decision is based on the following parameters:

• The multi-variant execution environment and all
the variants executed in it must impersonate one
single program as it would be executed normally
on the system. As a result, system calls that change
the state of the system must be executed by the
monitor. For example, a system call that creates a
file on the system must be executed once and vari-
ants are not be allowed to run it.

• System calls that produce non-immutable results
must be executed by the monitor and the variants
must receive identical results of the system call.
For example, reading the system time must be per-
formed by the monitor and the variants only re-
ceive the results. This is necessary to keep the vari-
ants in conforming states in the course of execution
and to prevent false positives.

• System calls without the above properties are exe-
cuted by all the variants. For example, chdir that
changes the working directory of the application is
executed by all the variants.

There are a number of system calls that do not change
the state of a program and, therefore, can be executed
by all the variants, but since they do not generate im-
mutable results, their results must be replaced the mon-
itor before returning to the variants. The system call
could also be executed by the monitor, however this
would impose a higher overhead because the moni-
tor would have to alter the variants’ registers to make
the variants skip the system call. Our measurements
showed that executing the original system calls in the
variants and replacing their results is faster than prevent-
ing the execution of these system calls in the variants.
For example, getpid returns the Process ID (PID) of
the process which is unique for the running processes
in the system. This system call returns a different value
to each variant. The monitor replaces the result of the
system call so that all variants receive an identical value.

Figure 2 shows the operations performed by the mon-
itor from the point that the variants invoke a system call
until it is executed and the variants receive its results.
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Figure 2: Flowchart showing the decisions made and the operations performed by the monitor for every system call.

2.2 Scheduling

Scheduling is an important source of inconsistency in
multi-process/multi-threaded variants. Scheduling of
processes or threads can cause the monitor to observe
different sequences of system calls and raise a false
alarm. Assume that p1 and p2 are the main variants,
p1−1 is p1’s child, and p2−1 is p2’s child. Consider a
scenario in which p1 obtains the processor and invokes
system call s1. The monitor expects p2 to call the same
system call, but p2−1 obtains the processor before p2

and calls a different system call. Since p2−1 is in the
same process group as p2, the monitor would detect a
breach and raise a false alarm.

The solution to this problem was proposed in [19].
Since the validity of our synchronous signal delivery al-
gorithm depends on this technique, we briefly describe
it here. The technique is based on synchronizing corre-
sponding variants to each other. In order to do so, when-
ever variants create new children, the monitor which is
responsible to supervise them creates a new child of it-
self and hands over the responsibility of monitoring the
variants’ children to it.

In the example case, the main variants p1 and p2

are monitored by monitor1. When the children p1−1

and p2−1 are spawned by p1 and p2, monitor1 spawns
monitor1−1 and passes the responsibility of monitoring
p1−1 and p2−1 to monitor1−1. This spawning can nest
arbitrarily.

3 Synchronous Signal Delivery

Handling asynchronous signals is one of the major chal-
lenges in multi-variant execution, as it can cause the
variants to execute different sequences of system calls.
This behavior is detected as a discrepancy and raises a
false alarm in the system. For example, assume vari-
ant p1 receives a signal and starts executing its signal
handler. p1’s signal handler then invokes system call
s1, causing the monitor to wait for the same system call
from p2. Meanwhile, variant p2 has not received the sig-
nal and is still running its main program code. When p2

calls system call s2, the monitor detects the difference
between s1 and s2 and raises an alarm.

A possible solution is to deliver signals syn-
chronously at synchronization points, which are in fact
the same as system calls. The problem with this ap-
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proach, however, is that some CPU intensive applica-
tions may not invoke any system call for a long period
of time during their execution. This will cause some
signals to be delivered with a long delay which may be
not acceptable for certain types of signals, such as timer
signals.

In this section we present a novel solution to the prob-
lem of asynchronous signal delivery which removes
false positives caused by asynchronous signals and is
not based on delivering signals at system calls. Our so-
lution benefits from the fact that whenever a signal is
sent to a variant, the operating system pauses the vari-
ant and notifies the monitor. The monitor can either de-
liver the signal to the variant, or save it and ignore it
for now. The monitor immediately delivers signals that
terminate program execution, such as SIGTERM, and
signals that are the result of CPU exceptions, such as
SIGSEGV. When one variant terminates, the monitor
expects all other variants to terminate without invoking
any further system calls. Otherwise, the monitor detects
a discrepancy and kills the other variants.

Other signals that do not terminate program execution
are delivered to all variants synchronously, meaning that
signals are delivered to all variants either before or after
a synchronization point (i.e., a system call), but not nec-
essarily at the synchronization point. In other words, if
we call the time span between any two consecutive sys-
tem call invocation a “signal time frame”, our algorithm
guarantees that a signal is delivered to all the variants in
the same signal time frame.

The variants are monitored after each system call and
the following rules are applied to them:

• If all the variants are paused because of receiving
a signal and none of them invokes any system call
before receiving the signal, the signal is delivered
to all the variants.

• If at least half of the variants receive a signal, but
the rest invoke a system call, the monitor makes the
latter variants skip the system call and forces them
to wait for the signal. The monitor then delivers the
signal to all variants and restores the system call in
those variants that have been made to skip it. The
variants that are forced to wait for a signal and do
not receive it within a configurable amount of time
are considered as non-complying.

• If fewer than half of the variants receive a sig-
nal and the rest invoke a system call, the signal
is ignored and the variants which are stopped by
the signal are resumed. The monitor keeps a list
of pending signals for each variant. All received

signals are added to these lists by the monitor.
As more variants receive the signal, the monitor
checks the lists and when half of the variants have
received the signal, the signal is delivered using the
method mentioned in the above rule. The only dif-
ference is that the signal has to be sent again to the
variants that ignored it.

Figure 3 shows a simplified version of the algorithm
that we have implemented. In order to simplify the
flowchart further, we have removed the finish state, but
any state that does not have an output edge actually goes
to the finish state.

We use majority voting to decide when to deliver sig-
nals. Majority voting is also used to determine non-
complying variants; if at least half of the variants receive
a signal and the remaining do not receive it, we consider
the second half as non-complying. Using majority vot-
ing in signal delivery works well in multi-variant execu-
tion systems that terminate all variants upon detection
of one or more non-complying variants. However, ter-
minating only non-complying variants and continuing
with the complying majority cannot always guarantee
correct results. A system that uses majority voting to
tolerate attacks and terminates only the non-complying
variants, must ensure that the variants are chosen prop-
erly so that the majority of them are not affected when
faced with attack vectors. It is often difficult to choose
the variants that provide such a guarantee.

3.1 Effectiveness
The synchronous signal delivery mechanism guarantees
that the same sequence of system calls is observed in all
the variants. However, if a signal handler invokes a sys-
tem call and passes a frequently changing value from the
program context to the system call, a false alarm may
still be raised. In our discussion, a frequently changing
value is a value that changes more than once between
two system calls.

As an example, suppose that a loop is executing in
each variant. If there is no system call invocation in
the body of the loop, the iterations of the loop will not
be synchronized among the variants. Now, if a signal
is raised and the signal handler tries to print the value
of the loop induction variable, the monitor may raise a
false alarm because the loop induction variable which is
passed as an argument of a system call, may not have
the same value in all the variants.

Due to nondeterministic nature of signals, signal han-
dlers usually do not use frequently changing values from
program contexts. Hence, we expect such false alarms
to be unlikely in real-life applications.
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Figure 3: A flowchart showing the sequence of actions taken by the monitor when a signal is delivered to a vari-
ant. In order to prevent false positive, the monitor delivers the signal to all the variants either before or after a
synchronization point.

3.2 Example Scenarios

This section illustrates our synchronous signal deliv-
ery algorithm using a few example scenarios. Figure 4
shows three different scenarios (a, b and c) of how a
signal can be received by three variants (p1, p2, and
p3). We use three variants to simplify the scenarios, but
the algorithm can be applied to any number of variants
larger than or equal to two.

The left side of each depicted scenario in the figure
shows how a signal would be delivered to the variants
in the absence of the synchronous signal delivery mech-
anism. A vertical arrow shows the flow of a process,
a thick horizontal line is a signal, and a rectangle repre-
sents a system call. The right side illustrates how the de-
livery of the signal is synchronized by our multi-variant

monitor. A thick gray dashed line is a signal that is
ignored by the monitor, and a double-stroke horizontal
line represents the same signal when it is later sent to the
process by the monitor. A circle shows a loop that is in-
jected to a process to make it spin-wait for a signal, and
a gray dashed rectangle is a system call that is skipped
by the monitor to make sure that the process receives the
signal before the system call. A skipped system call is
later restored by the monitor and executed by the corre-
sponding process. The three scenarios depicted in this
figure can be extrapolated to other scenarios using the
algorithm shown in Figure 3.

Part a of Figure 4 shows a scenario in which p1 re-
ceives a non-terminating signal (e.g., SIGVTALARM)
before a system call, but the other two variants receive
it after the system call. When p1 receives the signal,
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the operating system pauses the variant and notifies the
monitor. The monitor adds the signal to the pending sig-
nal list of p1 and waits for the other variants. Since the
other variants invoke the system call and do not receive
the signal, the monitor ignores the signal and resumes
p1. After the system call, p2 receives the signal and is
paused. At this time, the majority of the variants have
received the signal. The monitor waits for p3 to stop
either at a signal or a system call. The amount of time
that the monitor waits for such a variant can be config-
ured. p3 receives the signal shortly afterwards. Since
p1’s signal was ignored before the system call, the mon-
itor itself has to send it to p1 again. The monitor sends
the signal to p1 and delivers it to all the variants after the
system call.

Part b of Figure 4 shows another scenario that two
variants (p1 and p2) receive a signal before a system call,
but p3 invokes the system call before receiving the sig-
nal. p1 and p2 are paused by the OS when they receive
the signal and the monitor waits for p3 which invokes a
system call. Since majority of the processes have re-
ceived the signal before the system call, the monitor
makes p3 skip the system call and spin-wait for the sig-
nal. p3 receives the signal while executing the spin-wait
loop. The monitor delivers the signal to all the variants
and make p3 run the skipped system call.

Part c of the figure shows the other scenario where p1

receives a signal before Syscall 1, but p2 and p3 invoke
the system call. Similar to scenario a, the monitor ig-
nores the signal received by p1 and resumes it. After
Syscall 1, p2 receives the signal and, therefore, majority
of the processes have the signal in their pending lists.
The monitor waits for p3, skips Syscall 2 which is in-
voked by p3 and make it spin-wait for the signal. While
waiting for p3, p1 is running. It invokes syscall 2 before
p3 receives the signal. When p3 receives the signal, the
monitor sends the signal to p1 and makes it skip syscall
2. p1 receives the signal immediately after skipping the
system call. Now that all the variants have received the
signal, the monitors delivers it to all, restores syscall 2
in p1 and p3 and makes them run the system call again
and synchronizes all the variants at this system call.

3.3 Implementation

We use ptrace and pass PTRACE SYSCALL to mon-
itor the variants. The operating system notifies the mon-
itor whenever a variant invokes a system call or receives
a signal. If the variant invokes a system call, the moni-
tor can observe and change the registers of the variants
before the system call is actually executed by the OS.
The monitor cannot ask the operating system to ignore

the system call invocation, but it can change the regis-
ter values and have the OS run a different system call
instead of the one requested by the variant.

As mentioned before, our monitor sometimes needs
to make the variants skip a system call temporarily in or-
der to deliver signals synchronously. In such a case, the
monitor uses the aforementioned capability of ptrace
and changes the registers of the variants so that the re-
quested system call is replaced by a system call that
does not change any state, e.g., getpid. The moni-
tor takes a backup of the registers before changing them
so that it can restore them and make the variant run the
skipped system call later.

When a system call is skipped, the monitor has to
make the variant wait for the signal. A small tight loop
is used for this purpose. The monitor injects the code of
the loop to the memory space of the variant and changes
the instruction pointer of the variant to point to this
small loop. The variant starts executing the loop imme-
diately after skipping the system call. The number of it-
erations of this loop determines the maximum wait time
for a signal. It can be configured, but we always use one
billion iterations in our prototype system. Normally, not
all of the iterations are executed. The monitor is notified
as soon as the variant receives the signal. After being
notified, the monitor restores the original values of the
variant registers and the remaining iterations of the loop
are not executed. When the signal was not received af-
ter all loop iterations have been executed, the variant is
considered non-complying. We dispatch control back to
the monitor by emitting a system call in the code block
after the loop. The monitor intercepts this system call
and then applies the policy for non-complying variants.

To reduce the overhead of waiting for a signal, the
monitor makes the variant allocate a small memory
block at the beginning of the execution and injects the
loop only once to the variants and keeps its address for
later use. Should the variant need to wait for a signal,
the monitor redirects it to the previously injected loop.
The monitor exploits a similar approach that is used to
skip a system call to make the variant allocate the mem-
ory block used to store the loop; the monitor replaces a
system call by mmap and make the variant run mmap.
The original system call is restored and executed after-
wards.

4 Evaluation

There are not many programs that heavily use signals.
In order to evaluate the validity and effectiveness of our
synchronous signal delivery mechanism, we use SPEC
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Figure 4: Example scenarios of system call synchronization

CPU2000 [20] benchmarks and artificially make them
use signals. We add a few lines of code to the be-
ginning of the SPEC benchmarks to setup a timer that
sends a signal to the program every mili-second (using
setitimer). The benchmarks that we use are CPU-
bound benchmarks. Moreover, real-life programs often
do not receive signals as frequently as our benchmarks
do. Thus, our benchmark results show a rough upper
bound of the overhead imposed by our technique.

We use slightly different methods to evaluate the va-
lidity and effectiveness of our mechanism. In order to
evaluate the validity, we install a signal handler for the
timer signals that writes a string to the standard output.
The string is chosen so that it is never written to the
standard output by the original SPEC benchmarks. Us-
ing this signal handler verifies that corresponding sig-
nals are delivered to all the variants in the same “sig-
nal time frame”, otherwise the signals would cause the
monitor to detect either different sequences of system
calls or different arguments to system calls. Our ex-

periments show that when the synchronous signal de-
livery is disabled, the monitor detects a violation within
the first second from starting the execution and raises
an alarm. When the synchronous signal delivery is en-
abled, the benchmarks run without any problem to com-
pletion.

In order to evaluate the efficiency of our mechanism,
we use the same technique, but we install an empty sig-
nal handler. Using an empty signal handler, we can ob-
tain more accurate results by avoiding delays in writing
to the standard output.

We use two variants in our evaluations and compare
the performance of running them in parallel to the con-
ventional execution of one variant. All evaluations are
performed on an Intel Core 2 Quad Q9300 2.50 GHz
system running Ubuntu Linux 8.10 with Linux kernel
2.6.27-11.
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4.1 Performance

The security of the multi-variant execution has been
evaluated by other researchers [3, 19, 8] in the past. In
this paper, we focus on the performance evaluation of
the synchronous signal delivery mechanism.

As mentioned above, we use two variants in our eval-
uations. One variant is a normal executable and the
other one is a reverse-stack executable. A reverse-stack
executable writes the stack in the opposite direction that
is normally supported by hardware. For example, a
reverse-stack executable writes the stack upward on an
x86 platform. Running a reverse-stack executable along
with a normal stack executable in a multi-variant execu-
tion environment helps prevent stack-based buffer over-
flow attacks [18].

Figure 5 shows the performance of our monitor when
running the two variants. All of the SPEC CPU2000
benchmarks are used in our performance evaluations,
except the FORTRAN and C++ tests, because we cur-
rently only have a C library that operates in the reverse-
stack mode. The left bar of each benchmark shows
the performance of the original benchmark when run
without receiving signals and the right bar shows the
performance when receiving timer signals every mili-
second. The performance of each benchmark in both
cases is normalized to that of conventional execution
of the benchmark without receiving the timer signals.
The left bars show the slowdown caused by running
two variants of the same program and synchronizing
them at every system call and making sure that they in-
voke the same system call with equivalent arguments.
The multi-variant execution mechanism benefits from
the idle cores on the system and runs the variants in par-
allel. As a result, we do not observe much slowdown in
most benchmarks. equake and gcc are the only bench-
marks with more than 20% performance drop. The per-
formance degradation of equake is caused by memory
bandwidth. equake is a memory intensive benchmark
and memory bandwidth becomes the bottleneck when
running two instances of equake in parallel. gcc, how-
ever, is a system call intensive benchmark which in-
vokes more than 7000 system calls per second. Syn-
chronizing and monitoring these system calls is the
main cause of performance degradation in this bench-
mark.

The right bar shows total overhead imposed by the
synchronous signal delivery mechanism plus the multi-
variant execution monitoring. Synchronous signal de-
livery imposes less 20% overhead in addition to the
multi-variant monitoring. This can be considered as the
upper-bound of the overhead imposed by this technique,
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Figure 6: Average delay in delivering signals syn-
chronously to all the variants.

since real-life applications do not often receive as many
signals. Therefore, the overhead is much lower in real-
life applications and is negligible for applications that
use signals occasionally.

Average delay in delivering signals to the variants is
shown in Figure 6. This is the delay from the time the
monitor is notified of a signal arrival to the time that
the signal is delivered to the variant. The average de-
lay over all the benchmarks is about 450 micro-seconds.
The average delay is lower in benchmarks that invoke a
larger number of system calls per second. gcc which in-
vokes more than 7000 system calls per second has the
lowest average delay and vortex with more 3000 system
call invocations per second has the second lowest delay.
On the other hand, mesa that invokes less than 10 sys-
tem calls per second has the highest average delay. mcf
which has the second highest average delay invokes less
than 20 system calls per second.

A higher system call invocation density means more
synchronization points between the two variants. When
variants are closely synchronized, a timer signal is sent
almost simultaneously to both of them. However, in
benchmarks with few system call invocations where
variants are less frequently synchronized, a signal sent
to one variant is sent to the other variant apart in time.
Therefore, the first arriving signal has to wait longer in
the pending list for its counterpart to arrive in the other
variant, before they can be delivered synchronously.

5 Related Work
The idea of using diversity to improve robustness has a
long history in the fault tolerance community [1]. The
basic idea has been to generate multiple independent so-
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Figure 5: Performance of the SPEC CPU2000 benchmarks run in our multi-variant execution system normalized to
the conventional execution of the benchmarks.

lutions to a problem (e.g., multiple versions of a pro-
gram, developed by independent teams in independent
locations using even different programming languages),
with the hope that they will fail independently. The ex-
pectation is then that at any given point in time, a major-
ity of the variants will be functioning correctly, enabling
majority-based choice of a correct result even when con-
fronted with occasional faults.

Along with a rising awareness of the threat posed by
an increasingly severe computer monoculture, replica-
tion and diversity have also been proposed as a means
for improving security. Joseph and Avizienis [11] pro-
posed the use of n-version programming in conjunction
with control flow hashes to detect and contain computer
viruses. Cohen [7] proposed the use of obfuscation to
protect operating systems from attacks by hackers or
viruses, an idea that has reappeared in many variants.
Pu et al. [17] described a toolkit to automatically gener-
ate several different variants of a program, in a quest to
support operating system implementation diversity. Mc-
Dermott et al. [14] proposed the use of logical replica-
tion as a defense tool in an n-version database setting.
Rather than merely replicating data across databases,
they re-executed commands on each of the replicated
databases. This made it much more difficult for an at-
tacker to corrupt the database in a consistent manner by
way of a Trojan horse program. Forrest et al. [9] pro-
posed compiler-guided variance-enhancing techniques
such as interspersing non-functional code into appli-
cation programs, reordering the basic blocks of a pro-
gram, reordering individual instructions via instruction
scheduling, and changing the memory layout. Chew
and Song [6] proposed automated diversity of the in-

terface between application programs and the operat-
ing system by using system call randomization in con-
junction with link-time binary rewriting of the code that
called these functions. They also proposed randomiz-
ing the placement of an application’s stack. Similarly,
Xu et al. [21] proposed dynamically and transparently
relocating a program’s stack, heap, shared libraries, and
runtime control data structures to foil an attacker’s as-
sumptions about memory layout.

In recent years, researchers have started to look at
providing diversity using simultaneous multi-variant ex-
ecution on the same platform, rather than merely cre-
ating diversity across a network of computers. Cox et
al. [8] proposed running several artificially diversified
variants of a program on the same computer. Unlike our
method, they modified the Linux kernel to implement
multi-variant monitoring. They mentioned that asyn-
chronous signal delivery is one of the sources of false
positives, but they provided no solution to this problem.

Berger and Zorn [3] proposed redundant execution
with multiple variants that provided probabilistic mem-
ory safety by way of a randomized layout of objects
within the heap. Their proposed replicated execution
mechanism was limited to monitoring the standard I/O.
The focus of the work was on reliability (in particular
resilience against memory errors) rather than on attack
prevention. Novark et al. [16] proposed an extension
to this technique that found the locations and sizes of
memory errors by processing heap images; it could gen-
erate run-time patches to correct the errors. Their sys-
tem was able to run multiple replicas whose heaps were
randomized with different seeds.

Bruschi et al. [5] also proposed replicated execution
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of program variants with diversified memory layout to
defeat memory error exploits. They use the same idea
as [8] for address space randomization, and extended it
with a defense for overwriting only the lower bits of an
address. They also confirmed that signal handling is a
critical issue in multi-variant execution, but they did not
provide any solution.

Salamat et al. [19] implemented a multi-variant mon-
itor in user-space and provided solution to handle many
sources of false positives. They also proposed reversing
the stack growth direction as a variant generation tech-
nique that can fight stack-based buffer overflow vulner-
abilities when used in a multi-variant execution system.

6 Conclusions

Multi-variant execution is an effective application mon-
itoring mechanism that can prevent a wide range of at-
tacks. However, the lack of a technique to handle asyn-
chronous events such as signals was a major deficiency
of the multi-variant execution. In this paper, we pre-
sented a solution to the problem. The monitor inter-
cepts the signals and delivers them to all variants syn-
chronously. The synchronous delivery is done via regis-
ter and control flow manipulations, but the logical be-
havior of the variants remains intact. The evaluation
shows that this technique causes acceptable delays in
the delivery of signals and the overhead caused by this
technique can be negligible in real-life applications.

Because our solution supports many diversification
methods, multiple variation techniques can be combined
with each other to create highly diversified variants.
Multi-variant execution of such variants makes the sys-
tem resilient against a wide range of vulnerabilities. In
near future, when microprocessors with many cores be-
come pervasive, running a few variants simultaneously
can be well-worth a small performance loss, especially
for security sensitive applications.

Our multi-variant execution system currently detects
intrusion and re-initializes the variants. Although this
technique prevents attackers from gaining control over
the system, continuous attacks to the system may cause
denial of service. We are investigating methods that not
only can detect intrusion at run-time, but also can re-
pair corrupted instances. Such a system could automat-
ically detect, quarantine, re-initialize and recover cor-
rupted variants without interrupting the execution of le-
gitimate ones.
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