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Abstract

Multi-variant execution allows detecting exploited vul-
nerabilities before they can cause any damage to systems.
In this execution method, two or more slightly different vari-
ants of the same application are executed simultaneously on
top of a monitoring layer. In the course of execution, the
monitoring layer checks whether the instances are always
in complying states. Any discrepancies raises an alarm and
will result in termination of the non-complying instances.

We present a technique to generate program variants that
use a stack that grows in reverse direction in contrast to the
native stack growth direction of the platform. Such program
variants, when executed along with a normal instance in a
multi-variant environment, allow us to detect stack-based
buffer overflow attacks.

The technique is implemented by modifying GCC to gen-
erate executables that write their stacks in opposite direc-
tion. In addition, we briefly present the technique used to
build our multi-variant execution environment.

Through evaluation we have shown that our prototype
system can interdict the execution of malicious code in pop-
ular applications such as the Apache web server by trading
off a small performance penalty for a high degree of secu-
rity.

1. Introduction

Buffer overflow vulnerabilities give the opportunity to
remote attackers to inject and execute malicious code. This
phenomenon makes the exploitation of this type of vulnera-
bilities very appealing and, as a result, these vulnerabilities
are still among the main sources of exploited software se-
curity flaws.

The simplest and most common form of buffer overflow
attacks is “stack smashing”. In this type of attack, an at-
tacker overwrites the return address of the currently running
function, and cause the program to jump to his/her desired
location in memory, which can contain the injected code,

and execute it. In a similar form of buffer overflow attack,
the vulnerability is exploited to overwrite function point-
ers. Later, when the function is called, control is transferred
to the overwritten address which usually contains the mali-
cious code.

We present an approach to detect such vulnerabilities at
run-time, the moment an attacker attempts to exploit them.
This technique enables us to stop attacks before they can
cause any damage. Our solution is based on running a few
slightly different instances of the same application in lock-
step. More specifically, we generate several slightly differ-
ent variants of the same program. These program variants
have identical behavior under normal execution conditions
(“in-specification” behavior), but their behavior differs un-
der abnormal conditions (“out-of-specification” behavior).
In particular, we want the different variants to react differ-
ently when buffer overflows occur.

We run these variants in lockstep in distinct processes.
Every input is identically sent to all the variants, making
it impossible for an attacker to compromise variants one at
a time by sending different inputs to different variants. At
each system call invocation, the variants are suspended and
the monitor makes sure they have called the same system
call with equivalent arguments.

Any discrepancies in their behavior indicates that an
“out-of-specification” condition has occurred, and may be
a sign of an attack. These discrepancies cause the monitor
to take appropriate action based on the defined policy.

The main contribution of this paper is a compiler-based
technique to generate program variants with differing stack
growth directions. Diversity in the stack usage pattern of
the variants is necessary for detecting exploitations of stack-
based buffer overflow vulnerabilities, which account for the
majority of discovered and exploited vulnerabilities in the
buffer-overflow category. We also briefly present our user-
mode multi-variant execution technique. In contrast to pre-
vious work, our monitor is a regular user-space application
that is unprivileged. Such a user-space technique reduces
the trusted code base and limits the overall negative impact
of potential implementation errors in the monitor.



2 Generating Reverse-stack Variants

Previously proposed variant generation techniques have
addressed code diversity (i.e. instruction set randomiza-
tion), and heap address variations (i.e. heap address ran-
domization). To the best of our knowledge, our work is the
first to provide address diversity for objects on the stack by
using different stack growth directions. Since most attack
vectors target the stack, our technique covers a broad range
of vulnerabilities.

The stack growth direction is inflexible in most archi-
tectures and almost all major microprocessors support only
one stack growth direction intrinsically. For example, x86
instruction set is designed to grow the stack downward and
all the stack manipulation instructions such as PUSH and
POP adjust the stack pointer accordingly. In this paper, we
focus on providing a mechanism to reverse the stack growth
direction for the x86 instruction set, but our technique is ap-
plicable to other architectures with minimal changes.

To reverse the stack growth direction, it might seem rea-
sonable to replace the stack manipulation instructions with a
combination of ADD/SUB and MOV instructions. However,
for certain instruction formats, this transformation would
produce invalid instructions. For example, a PUSH instruc-
tion in x86 can have an indirect operand. The above trans-
formation for such an instruction would produce an invalid
form of MOV instruction which has two indirect operands;
the indirect operand of the PUSH and the indirect address of
the top of the stack.

Using a scratch register to store and restore the indirect
values would solve the problem, but is not efficient. Our so-
lution to this problem is using the standard stack manipula-
tion instructions and adjusting the stack pointer explicitly to
compensate for the value that is internally added/subtracted
to/from the stack pointer by these instructions.

2.1 Stack Pointer Adjustment

In architectures that grow the stack downward, the stack
pointer points to the last element on top of the stack. To
allocate n bytes on the stack in these architectures, it is
enough to decrement the stack pointer by n.

In upward growing stack, the stack pointer should point
to the first empty slot on top of the stack, instead of the last
element. If the stack pointer pointed to the last element in
an upward growing stack, we would need to know the size
of the last element in order to allocate space on the stack.
Since keeping track of the size of the last element imposes
an overhead, we let the stack pointer point to the first empty
slot on the stack when the stack grows upward. Adopting
this convention, we need to augment every stack manipu-
lation instruction with two instructions: one to adjust the
stack pointer (E'SP in x86) before these instructions and

one to adjust FSP afterwards. Many of these extra in-
structions are merged together or completely removed by
the compiler optimizations.

Using ADD and SUB to adjust ESP can have undesired
side effects, since these instructions set CPU condition flags
which may interfere with the flags set by other instructions
in the regular instruction stream of the program. Instead, we
use the x86 LEA instruction, which can add/subtract to/from
a register without modifying condition flags. Hence, we
substitute the indirect PUSH (%$EAX) instruction with:

LEA $4, SESP
PUSH ($EAX)
LEA $4, SESP

The optimization phase of the compiler removes some these
LEA’s or replaces them by ADD/SUB when possible.

Although this approach is necessary for properly revers-
ing the stack-growth direction for instructions with indirect
operands, due to the low intrinsic overhead we opted to use
it for all stack manipulation instructions.

2.2 Function and Sibling Calls

The stack pointer must be adjusted before and after all
the stack manipulation instructions, including CALL and
RET. Unlike PUSH and POP, control is diverted after these
instructions and the stack pointer cannot be adjusted imme-
diately after them.

While it might seem conceivable to replace CALL and
RET instructions by a stack manipulation instruction fol-
lowed by an indirect branch instruction, we chose to keep
the actual CALL and RET instructions in place to take ad-
vantage of the Return Address Stack (RAS) and to mini-
mize performance loss in reverse stack executables. The
RAS is a circular last-in first-out (LIFO) structure in high-
performance processors that is used for predicting the target
of return instructions.

To ensure proper stack adjustments after function calls,
the adjustment is made at the target site of the call and in
the prologue of functions. The adjustments cause the stack
pointer to pass over the return address placed on the stack
by the CALL instruction.

While this works correctly for most function calls, it fails
when functions are invoked using a jump instruction instead
of a CALL. This invocation mechanism is called a “sibling
call” in GCC’s terminology. The sibling call technique is
an optimization performed by the compiler and is applied
when a subroutine is called inside another subroutine or
function and when the caller returns immediately after the
called subroutine completes.

To ensure proper semantics, the £/S P must be adjusted
only if control is transfered to the function via a CALL.



However, at compile time it is not always possible to de-
termine whether a function will be entered using a jump
because C/C++ allows separate compilation units and the
caller and callee functions could be located in different
compilation units. Besides, function pointers eliminate the
required bindings between the caller and the callee at com-
pile time. To tackle this problem, we always adjust the stack
pointer in the prologue of all functions. We decrement the
stack pointer before executing a jump used to invoke a func-
tion, to offset the adjustment that will occur at the call site.

2.3 Returns and Callee-Popped Argu-
ments

The stack must be adjusted after the execution of a RET
instruction, but similar to the CALL case, the instructions
added after a return wouldn’t be executed. In this case, the
required instructions are added after CALL instructions. A
RET instruction causes the control to be transfered to the
instruction after the CALL in the caller. This is where the
stack pointer is adjusted.

Some functions remove their own arguments from the
stack before they return. In GCC version 2.8 and later the
callee is responsible for the stack clean up if it returns data
in memory (e.g., functions that return a structure). Also,
calling conventions in some programming languages can
force the callee to pop its own arguments from the stack
(e.g. __stdcall in C/C++).

When generating x86 code for this kind of functions,
compilers emit a RET instruction with an operand. The
operand indicates the number of bytes that should be
popped from the stack when RET is executed. This RET
instruction first pops the return address from the stack and
stores it in the instruction pointer, then increments the
stack pointer internally. When the stack grows upward,
the stack pointer must to be decremented rather than incre-
mented. Replacing this instruction by a SUB that decre-
ments the stack pointer and a normal RET instruction (with
no operand) does not solve the problem, because the SUB
which would be executed before the RET, would change
the stack pointer and the £.S P would no longer point to the
return address. Hence, the value that the RET reads would
not be the correct return address.

Replacing a stack pointer adjusting RET instruction by a
set of three instructions that pop the return address from the
stack into a temporary register, decrement the stack pointer
and then jump indirectly to the temporary register, solves
the problem. We use FCX as the temporary register be-
cause in GCC, it is a volatile register which is assumed to
be clobbered after a function call and is not used to return
values to the caller. This choice of temporary register elim-
inates the need to store and restore £C X before and after
this specific use.

Downward Upward

Growing Stack Growing Stack
Return Address
Prev. Frame Ptr. char ¢
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Figure 1. Stack layout of a compound struc-
ture and other local variables of a function.
With a reverse growing stack, the layout of
the whole structure has changed relative to
other local variables. The layout of data mem-
bers inside of compound structures remains
unchanged regardless of the stack growth di-
rection.

2.4 Structures and Arrays

No matter whether the stack grows upward or down-
ward, natural ordering of large data units such as quad word
integers (Long long), arrays, and C/C++ structures and
classes, must be preserved. As an example, consider a struc-
ture that has two member variables: a four-byte integer and
a one-byte character. The layout of this structure must al-
ways be the same, no matter whether such an object is al-
located on the heap or on the stack. If we were to copy
the contents of a structure from the stack to the heap via
memcpy and the storage layouts differed, the objects would
not be compatible.

To ensure object compatibility, we always maintain the
layout of the constituent data units inside such large storage
units no matter where they are allocated (see Figure Fig-
ure 1). Maintaining this ordering prevents us from building
a generic dynamic translation tool that can generate a re-
verse stack executable from a standard executable without
symbolic information. In order to perform such translation
on binary code, we would need to know the boundaries of
all data units on the stack.

3 The Monitor

The monitor can be considered as the most important
component of a multi-variant execution environment. The
monitor is responsible for synchronizing the variants, send-
ing identical program input over all the instances, com-
paring their states and ensuring that all instances remain
in conforming state. Comparing the variants’ state can be
performed at different granularities, ranging from a coarse-
grained approach that only checks if the final output of each



instance is identical all the way to a checkpointing mech-
anism that periodically compares the register and memory
state of each parallel execution unit to ensure that they still
execute semantically equivalent instructions in lockstep.

In our prototype system we use coarse-grained monitor-
ing that compares the state of the instances at the granularity
of system calls. The instances are considered to be in con-
forming state as long each instance calls the same system
call with equivalent arguments.

As an example, if instance A invokes a system call to
write 100 bytes to file out . t xt, all other instances are ex-
pected to issue the same system call and request to write
the same byte sequence to the same file. Moreover, the in-
stances are expected to send their requests within a certain
time window. Once all instances have arrived at the check-
point, the file operation is performed by the monitor, and
the result is sent to all the instances.

We use the operating system debugging facilities, e.g.
ptrace in UNIX like OSes, to implement a user-space mon-
itoring layer, which doesn’t need any kernel modifications.
Due to space constraints, we do not provide further imple-
mentation details of the monitor in this paper and refer in-
terested readers to [13].

4 Benchmarks

In order to take advantage of the GCC optimizations,
many of our compiler modifications have been done on the
RTL (register transfer language) intermediate representa-
tion level. Figure 2 shows x86 assembly code that calls
strlen and then printf. Both code snippets are gen-
erated by our modified GCC. Left one is generated with op-
timizations enabled (-O2) and the right one without any op-
timization. As it can be seen, compiler optimizations have
an important role in removing extra instructions added to
the code to make the stack grow upward. The optimized
code has only one instruction more than the equivalent code
for downward growing stack, while the unoptimized code
has four extra instructions.

Our modified compiler can generate reverse-stack as-
sembly code for multiple programming languages sup-
ported by the GCC front-end. However, in order to gen-
erate executables, we need appropriate libraries as well.
Since porting libraries is merely an engineering effort with-
out any major scientific insights, we have not attempted to
port a FORTRAN or C++ library for reverse stack execu-
tion. Thus, FORTRAN and C++ benchmarks are excluded
from our evaluations.

We choose C benchmarks from the SPEC CPU 2000 [14]
and also Apache web-server version 1.3.29 to evaluate per-
formance overhead of our proposed technique. The evalu-
ation was performed on an Intel 2.33 GHz Dual Core Pro-
cessor (5140) system running Red Hat Enterprise Linux 4

Unoptimized (-O0) Optimized (-02)

addl $8, %esp addl $12, %esp

movl —12(%ebp), %eax| movl —12(%ebp ), %eax
movl YDeax , —4(%esp) movl YDeax , —8(%esp)
leal 4(%esp), %esp call strlen

call strlen movl $.LCO, —8(%esp)
leal —4(%esp), %esp movl JDeax , —12(%esp)
movl Yeax , —8(%esp) call printf

movl $.LCO, —4(%esp)| subl $4, %esp

leal 4(%esp), %esp
call printf
leal —4(%esp ), %esp

Figure 2. The effect of optimizations on re-
ducing the code size in reverse stack exe-
cutables.

and Linux kernel 2.6.9-55.0.6. ELsmp.

Figure 3 shows performance as the ratio of the execution
times of benchmarks compiled for normal stack growth to
those of compiled for reverse-stack growth. The results are
shown for non-optimized, as well as, optimized executables.
The performance overhead of our reverse-stack execution
technique is only 3% on average.

One of the main reasons for this negligible performance
overhead is that we only add simple arithmetic instructions
to the code that can be executed in parallel with other in-
structions in modern superscalar processors. Since the ex-
ecution bandwidth of these microprocessors is often under-
utilized, the addition of simple instructions that are executed
in parallel with others, results in higher instruction level par-
allelism (ILP) and does not increase the execution time. Be-
cause of the same reason, we can see that even when the
compiler optimization is disabled and the number of extra
instructions is much larger, the overhead of our technique is
still negligible.

Performance of gap and equake is improved by a small
amount. This is likely due to the fact that an upward
growing stack better matches the default cache pre-fetching
heuristics, which results in a slightly better cache hit rate.

We also measured the static and dynamic code size of
reverse-stack executables. The static code size is increased
by 10% on average. The highest code size increase is 17%
for perlbmk. The average dynamic code size increase is 6%
with a maximum of 16% for Apache. Comparing these re-
sults with those in Figure 3, we can see that static or dy-
namic code size is not strongly correlated to the perfor-
mance. In fact, as explained, ILP is the main factor that
affects performance.

Figure 4 shows the overhead of running two instances
simultaneously on a dual-core processor and on top of the
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Figure 3. Performance shown as a ratio of the
execution times of benchmarks compiled for
normal (downward) stack growth compared
to that of reverse stack growth, with com-
piler optimizations disabled (-00) and en-
abled (-02). Each bar is normalized to its cor-
responding normal-stack version.

monitor. To show the impact of stack reversal we mea-
sured the overhead for both, executing two instances with
regular downward stack growth (DD), and actual multi-
variant execution with two instances with opposite stack
growth directions (DU). The average performance loss is
10%. The greatest performance loss is observed for gcc and
equake. Both programs operate on large buffers whose con-
tents should be read and compared by the monitor.

We used published exploits in Apache modules as test
vectors to evaluate the effectiveness of reverse-stack exe-
cution on our multi-variant execution environment. The
published exploits usually work in very specific environ-
ments and even minor changes to any components of these
environments, such as compiler version or the operating
system version, can disrupt them. Adapting the exploits
to new environments and testing them is a work intensive
task. We reconstructed Apache mod _rewrite [7] and Apache
mod_include [8] in our test environment and tried to attack a
vulnerable Apache running on our multi-variant system. In
all our attempts, the monitor detected the attacks and pre-
vented potential damage to the system.

5 Related Work

Software security is very important, and researchers have
been actively working on improving it. As a result, there is
a much larger body of related work than space constraints
permit us to cite. Therefore, we present the most relevant
work.

Figure 4. Performance of executing two vari-
ants of a program on top of our monitor, nor-
malized to that of a single normal executable
running normally. DD shows the overhead of
executing two instances with regular down-
ward stack growth and DU shows the same
information when instances manipulate the
stack in opposite directions.

Pu et al. [12] described a toolkit to automatically gener-
ate several different variants of a program, in a quest to sup-
port operating system implementation diversity. Forrest et
al. [9] have proposed compiler-guided variance-enhancing
techniques such as interspersing non-functional code into
application programs and reordering the basic blocks of
a program. Chew and Song [3] propose automated di-
versity of the interface between application programs and
the operating system by using system call randomization
in conjunction with link-time binary rewriting of the code
that calls these functions. They also propose randomizing
the placement of an application’s stack. Similarly, Xu et
al. [16] propose dynamically and transparently relocating a
program’s stack, heap, shared libraries, and runtime control
data structures to foil an attacker’s assumptions about mem-
ory layout.

Recently, researchers have started to look at provid-
ing diversity using simultaneous n-variant execution; our
method falls into this category. Cox et al. [6] propose run-
ning several artificially diversified variants of a program on
the same computer. Unlike our method, their approach re-
quires modifications to the Linux kernel, which increases
the maintenance effort and related security risks. Berger and
Zorn [1] propose redundant execution with multiple vari-
ants that provide probabilistic memory safety by randomiz-
ing layout of objects within the heap. Novark et al. [11] pro-
pose an extension to this technique that finds the locations
and sizes of memory errors by processing heap images.



A large body of existing research has studied the preven-
tion of buffer overflow attacks at run-time [10, 15]. Several
existing solutions are based on obfuscating return addresses
and other pointers that might be compromised by an at-
tacker [2]. The simplest form of these use an XOR mask to
both “encrypt” and “decrypt” such values. PointGuard [4]
engages the compiler in preventing buffer overflow attacks.
In this method pointers are XORed with a random key gen-
erated per process. Unfortunately, it is relatively easy to
circumvent this simple pointer obfuscation. StackGuard [5]
is an alternative solution that protects the return address by
storing a canary value in front of it. The assumption is that
any attack that would overwrite the return address would
also modify the canary value, and hence checking the ca-
nary prior to returning will detect such an attack.

Unfortunately, most of these safeguards can be circum-
vented. For example, an XOR encrypted key can be recov-
ered trivially if an attacker has simultaneous access to both
the plain-text version of a pointer and its encrypted value.
In the case of a return address on a stack, this is usually the
case.

6 Conclusion

We presented a compiler technique that generates
the reverse-stack instance of a program. The out-of-
specification behavior of such an instance is different from
that of a normal instance. This characteristic, when used in
a multi-variant execution environment, allows us foil ex-
ploited stack-based buffer overflow vulnerabilities before
they cause any damage to the systems. Our technique is
complementary to other methods that try to remove vul-
nerabilities, such as static analysis. Instead of finding and
removing the vulnerabilities, our method accepts the in-
evitable existence of vulnerabilities and prevents their ex-
ploitations. A major advantage of this approach is that it
enables us to detect and prevent a wide range of threats, in-
cluding “zero-day” attacks.

Our diversification technique can be orthogonally com-
bined with other code/data diversification methods, such as
system call renumbering [3] and heap randomization [1] to
create a large number of variants. Running such a large
number of variants makes the system resilient against a
much wider range of vulnerabilities. In near future, when
microprocessors with many cores become pervasive, run-
ning many variants simultaneously will well worth a small
performance loss, especially for security sensitive applica-
tions.
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