
Fast Speculative Address Generation and Way
Caching for Reducing L1 Data Cache Energy

Dan Nicolaescu Babak Salamat Alex Veidenbaum
School of Information and Computer Science

University of California, Irvine
Email: {dann,alexv,bsalamat}@ics.uci.edu

Mateo Valero
Computer Architecture Department

Polytechnical University of Catalunia, Spain
Email: mateo@ac.upc.es

Abstract— L1 data caches in high-performance processors
continue to grow in set associativity. Higher associativity can
significantly increase the cache energy consumption. Cache access
latency can be affected as well, leading to an increase in
overall energy consumption due to increased execution time.
At the same time, the static energy consumption of the cache
increases significantly with each new process generation. This
paper proposes a new approach to reduce the overall L1 cache
energy consumption using a combination of way caching and fast,
speculative address generation. A 16-entry way cache storing a
3–bit way number for recently accessed L1 data cache lines is
shown sufficient to significantly reduce both static and dynamic
energy consumption of the L1 cache. Fast speculative address
generation helps to hide the way cache access latency and is
highly accurate. The L1 cache energy-delay product is reduced
by 10% compared to using the way cache alone and by 37%
compared to the use of Multiple MRU technique.

I. INTRODUCTION

The memory hierarchy organization is critical to achieving
high performance and controlling both static and dynamic
energy consumption in out-of-order processors. Cache miss
rates improve with larger size and higher cache associativity.
Recent Pentium processors have used either a 4-way L1 data
cache [1] or an 8-way L1 data cache [2], and IBM Power6
will have a 64KB 8-way set associative L1 data cache [3].
Unfortunately higher associativity and size may increase the
access latency and significantly increase the dynamic energy
consumption of the cache system.

High-performance set associative caches access data and
tags in parallel. All tag entries in an indexed set are read and
compared with the issued address in parallel. All data lines
in a set are read at the same time, even though the addressed
data can only reside in one of them. This parallel access to all
tags and data entries in a set is inherently energy inefficient,
but it is essential for fast cache access. This is also the reason
why the dynamic energy consumption of cache access grows
with associativity.

The static or leakage energy consumption grows as the pro-
cess technology shrinks transistor size and threshold voltage.
The leakage energy is projected to reach levels comparable to
dynamic energy consumption [4]. Large caches are responsible
for a high fraction of total chip static power consumption.

This work was supported in part by the National Science Foundation under
grants NSF CCF–0311738 and CNS–0220069.

Given the trend for increasing L1 data cache size and
associativity, new solutions need to be found to improve
all critical cache parameters: access latency, dynamic energy
consumption and static energy consumption.

A number of techniques have been proposed for decreasing
the energy consumption of set-associative access (see below).
Dynamic energy is reduced by only accessing one way of
the cache. This requires additional hardware that needs to be
looked up before starting the cache operation. The latency
of the lookup process increases the cache access time. Static
energy is primarily reduced by circuit techniques that lower the
voltage of each RAM cell. These techniques require additional
time to access the data in the powered down cells.

New techniques are still required in both cases to reduce
the time penalty and to further decrease the cache energy
consumption. The techniques proposed in this paper for L1
data cache are one possible approach to achieve this.

The new approach proposed in this paper is based on using
a Way Cache Unit (WCU), a very small fully associative
cache that tracks way numbers of recently accessed cache line
addresses. The WCU is searched prior to L1 cache access. If
the WCU access was a hit then the way number is read out and
only the desired L1 cache way is accessed. This significantly
reduces the dynamic energy consumption. The WCU is also
used to reduce the static energy consumption of the L1 cache
in combination with the drowsy cache line technique [5].

The WCU was first used to reduce the dynamic energy of
highly associative L1 data caches in embedded processors [6]
and later also applied to L2 caches in [7]. It works better than
way prediction because it is not speculative. However, it does
introduce an additional delay in accessing the L1 data cache,
degrading the overall performance by approximately 5%.

The new architecture proposed in this paper introduces a
fast, 16b address generation unit (AGU) that is used specula-
tively to compute a part of the effective address, while the
rest of the address remains unchanged. This allows a 48b
address computation to be completed significantly faster. It
also allows pipelined access to the WCU CAM to start at the
same time as the address calculation. This approach is based
on a predictor which is shown to be highly accurate. Finally,
the WCU reduces the static energy consumption by keeping
all L1 lines not in the WCU in the drowsy mode.

This paper makes the following contributions to cache

seidel
1-4244-9707-X/06/$20.00 ©2006 IEEE

energy management.

• A predictor to determine if an address computation can
be performed by the fast AGU is proposed

• A fast address generator enabled by the predictor is pro-
posed allowing access to the Way Cache in the Execute
stage

• A very small Way Cache is shown capable of reducing the
static energy consumption by putting most L1 cache lines
into drowsy state. The Way Cache access is pipelined to
further reduce its access time.

• Compares the static and dynamic energy savings and
energy-delay product achieved by the Way Cache with
other approaches.

The rest of the paper is organized as follows. Related
work is briefly described Sec. I-A, address prediction and
fast address generation are described in Sec. II, followed by a
description of the experimental setup: processor configuration,
energy models and a description of the proposed architectures
in Sec. III-A, III-B and III-C. The experimental data is
analyzed and discussed in Sec. III-D.

A. Related Work

A number of techniques has been proposed to address both
dynamic and static energy consumption in caches. Due to
space limitations only the most relevant techniques are briefly
described below.

The dynamic energy reduction techniques target the high
energy consumption of set-associative cache access due to
parallel tag and data store look-up. A phased cache [8] first
accesses the tag store and compares tags in all N ways of
the tag store. Only the requested data store way is accessed
in the next ’phase’ after the tag comparison completes. This
technique increases the cache access latency and is not suitable
for high-performance L1 caches. It has been successfully
applied in L2 caches [9] without significant performance
impact.

Way–prediction, a speculative technique that predicts the
correct cache way to access, was first implemented in the
R10000 processor [10] (also described in [8]). It uses a
predictor with an entry for each set in the cache. Each predictor
entry stores the most recently used way for the cache set. The
tag and data store is accessed only for the way returned by
the predictor. In case of an incorrect prediction the access is
replayed, accessing all cache ways in parallel. The required
predictor, especially for large modern L1 caches, is likely to
increase the cache latency even for correct predictions.

Way prediction in L1 I-cache has been implemented by
adding a pointer to the next line/way to each I-cache line [11]
or in the branch target buffer [12], but these techniques do
not work well in D-caches. Finally, a multiple-MRU predictor
(MMRU) has been proposed in [13], which allowed a higher
prediction accuracy at the expense of maintaining multiple
predictions for each set.

The proposed leakage reduction techniques can be divided
into state preserving and state destroying techniques.

The gated-Vdd [14] technique identifies the cache lines that
are not likely to be accessed and gates the power supply for
those lines. As a consequence all the information stored in
the powered off lines is lost. The gated-Vss [15] is a similar
technique that disconnects the ground connection to shutdown
the lines. The later technique is able to reduce bitline leakage
more effectively. Both voltage gating techniques increase the
miss rate of the cache, since they practically shrink the
effective cache size. In [16] a similar technique is used to
reduce cache leakage by invalidating and turning off cache
lines when they hold data not likely to be reused.

Drowsy cache [5] is a state–preserving technique which
reduces supply voltage instead of completely gating it off. The
advantage of this technique is that it can achieve the same hit
rate as conventional caches, since the drowsy lines preserve
their information. However, the leakage current dissipation is
slightly higher than that of gated-Vdd and gated-Vss. It should
be noted that the supply voltage of a drowsy line must be
restored before accessing it. This wake–up process takes time
and thus imposes additional delay in accessing the cache. In
order to minimize the number of lines in active mode, all
active cache lines are put into drowsy mode periodically, for
example every 2000 cycles.

Cache line reuse information is used in [17] to implement
cache line allocation policies, similar information can be used
to minimize the number of cache lines that in the active state
at a given time.

In [18] the Multiple MRU policy was proposed to be used
to reduce the wake–up delay in drowsy caches by keeping the
likely to be accessed cache lines awake. This technique keeps
one or two most recently used lines awake in each set. It also
requires a periodic reset to keep the number of active lines
small.

A mixed hardware–software approach was presented in [19].
Tag checks are avoided by having a compiler output special
load/store instructions that use tags from a previous load. This
approach requires changes to the compiler and the ISA and
adds hardware complexity.

II. PROPOSED ARCHITECTURE

The goal of the architecture proposed in this paper is to use
the Way Cache to reduce both the static and dynamic energy
consumed by the L1 data cache. The main advantage of the
proposed design is that it can accomplish the energy consumed
reduction without increasing the L1 cache latency. This is
possible because the additional delay of accessing the Way
Cache is hidden by the new fast address generation approach.

The effective address of the memory location accessed is
computed in the Execute stage of the pipeline and it consists of
the addition of a register and an offset. The technique proposed
in this paper relies on the fact that for majority of address
computations the offset is small and usually does not have a
carry beyond bit 19 [20]. As such the address can be computed
in a specialized, narrower, and consequently faster, Address
Generation Unit (AGU). This faster computation can finish
before the end of the cycle and it allows for the Way Cache

access to be also performed within the same cycle and to be
pipelined.

A. Speeding up address generation

Fetch
FUs

Decode
Issue

Queue

AGU

Write

Back
CommitWCU

or

MRU

Cache

Execute stage

Fig. 1. Original Pipeline

The effective address of memory instructions in most RISC
ISAs is computed by addition of an offset to a base. On Alpha
21264 the offset is a 16-bit number and the base is 48 bits.
Therefore, a 48-bit adder is used to generate the effective
address. Since the offset is 16 bits, a 48-bit wide adder is
only used to propagate possible carries from the addition of
the least significant 16 bits. The carry propagation terminates
upon reaching the first zero in the base and the rest of the
bits remain unchanged. Our simulation results show that a 19-
bit adder is enough for generating the address of more than
97% of the memory access instructions in SPEC CPU2000
benchmarks. Another observation is that the 3 low–order bits
of the offset or the base are often zero and, therefore, no carry
is generated from the addition of the least significant bits.

The above properties can be exploited to design a faster
address generator (AGU). A 3-bit adder adds the low 3 bits
of the offset to the base and in parallel a 16-bit adder adds
the remaining bits of the offset to the corresponding bits of
the base. Then the results of the 3-bit adder and the 16-bit
adder and the remaining bits of the base (bit number 19 to
47) are concatenated to create the effective address. Thus the
delay of this address generator is equal to that of a 16-bit AGU
and can be performed in approximately half the time it takes
to perform a 48b add. A schematic of the fast AGU and its
operation is shown in Figure 2.

Since the carry bit is not propagated from either the 3–
bit adder or the 16–bit adder, the computed address would
be incorrect if either adder generates a carry signal. An OR
of the two carry signals is performed to generate a Carry
Out signal. In case of an incorrect address generation (Carry
Out=1) the results are discarded and the effective address
is computed by the conventional 48b address generator that
is started in parallel with the fast AGU (see Figure 3(d)).
Obviously, when the generated address is incorrect the WCU
access is postponed to the following cycle.

16-bit

Offset

48-bit Base 3

3

16

13

48-bit Effective Address

16

3

29

16-bit

Adder

3-bit Adder023181947

023181947

02315

Fast AGU

Carry Out1

Fig. 2. Fast AGU block diagram

AGU

Fast
AGU

AGL
Pred.

Use Fast AGU
Carry Out

WCU

Logic to select

between AGU

and Fast AGU
(d)

Issue Fast

AGU

WCU1

Cache

Execute stage

AGL Pred.

WCU Access with

Fast Address

Generation WCU0
WCU Hit

(b)

Normal WCU

Access

Issue

AGU WCU Cache

Execute stage

AGL Pred.

(a)

Issue AGU MRU Cache

Execute stage
Normal MRU

Access
(c)

Fig. 3. Modified pipelines

B. Address generation latency predictor

Using the conventional AGU imposes more delay and
changes the scheduling of dependent instructions. To handle
this issue, an Address Generation Latency (AGL) Predictor
predicts which of the two AGUs will be used to generate the
address and scheduling of dependent instructions is done based
on the delay of the predicted AGU.

The AGL predictor is a PC-indexed table. Each table entry
is only one bit. The predictor is looked up only for memory
instructions during the issue queue stage. The AGL predictor
is updated in the write-back stage based on whether the fast
AGU generated the correct address. Thus, the fast AGU always
computes the address to provide information necessary for
updating the predictor.

If the predictor predicted fast address computation for a load
and it turned out to be wrong, any dependent instructions that
were issued based on this prediction should be replayed. No
replay is required in case of mispredictions for stores.

The AGL misprediction recovery is much simpler than
branch misprediction recovery. There is no need to flush the
pipeline here. It is enough only to issue again the incorrectly
scheduled instructions. This technique has been used in Alpha
21264 to reissue the dependents of a load that has a cache
miss [11]. The penalty of such a replay is only 1 cycle in our
case. Given that a 128 entry AGL predictor is 99% accurate
and less than 25% of total instructions are loads, the impact
on performance is negligible.

The pipeline organization using the proposed techniques is
presented in Figure 3(b). In the Issue stage of the pipeline
a prediction is made for memory access instructions whether
their address computation can be done in the fast AGU. Such
instructions access the fast AGU and WCU in the execute
stage in two steps: the effective address computation which is
done on the fast AGU and the Way Cache Unit look up. In
order to make WCU access faster, the WCU CAM tag array is
partitioned into two slices. One slice keeps the most significant
bits (bits 19 to 47) of the address (WCU0 in the figure) and
the second one (WCU1) stores the rest of the tag bits. The
width of WCU1 CAM entries for a 64KB cache with 64-byte
lines is only 13 bits.

While a 19b address is generated in the fast AGU, the high-
order bits of the address remain unchanged from the base
register. Thus they are available at the beginning of the Execute
stage and can be looked up in WCU0 in parallel with the
fast AGU. After fast AGU finishes the computation, WCU1 is
accessed using the generated address. A WCU hit occurs when
both WCU0 and WCU1 indicate a hit. Using this approach
the WCU lookup is effectively shortened. Since the fast AGU
takes approximately half a cycle and the 13b WCU1 look up
is also significantly faster than the original 42bit lookup, both
operations complete before the end of the execute cycle. The
WCU data array is accessed next without address decoding by
using the AND of WCU0 and WCU1 match lines.

III. EXPERIMENTAL RESULTS

A. Benchmarks and processor configuration

L1 I–cache 64KB, 64 byte/line, 2 cycle
L1 D–cache 64KB, 64 byte/line,

2 cycle, 2 R/W ports
L2 cache 2MB, 8 way, 64 byte/line, 20 cycle
Issue 4 way out-of-order
Branch predictor 64K entry g–share, 4K-entry BTB
Reorder buffer 256 entry
Load/Store Queue 64 entry
Arithmetic Units 4 integer, 4 floating point units
Complex Units 2 INT, 2 FP multiply/divide units
Pipeline 15 cycles (some stages are multi–cycle)

TABLE I

PROCESSOR CONFIGURATION

The baseline architecture modeled here was an aggressive
64–bit high–performance processor. The details of the proces-
sor are given in Table I. The memory hierarchy latencies are
3/20/200 cycles for the L1/L2/memory accesses, respectively.
The latency of the L1 data cache consists of one cycle to
compute the effective address and two cycles for the effective
cache access. The L1 cache is virtually indexed and physically
tagged.

The SPEC CPU2000 benchmark suite was used with the
reference data sets. The benchmarks were compiled with
the -O4 flag using the Compaq compiler targeted for the
Alpha 21264 processor. The architecture was simulated using
a modified version of SimpleScalar [21]. The benchmarks
were fast–forwarded for 500 million instructions, then fully
simulated for 5 billion instructions.

B. Energy Model

The dynamic and static energy consumption of the data
cache was modeled using Cacti4 [22]. The MRU predictor
was modeled using a SPICE model for a custom SRAM
array. SPICE models were also used to model the CAM
part and the data array of the Way Cache. The static energy
consumption for cache lines in drowsy state was 10% of the
energy consumption in normal state. The process technology
used was 0.07 microns.

C. Evaluated Architectures

In order to evaluate the proposed technique, several pro-
cessor architectures were considered. The processor configu-
rations differed only in the way the L1 data cache access was

performed. All configurations use a drowsy cache, and try to
keep as many cache lines as possible in the drowsy state. If
an L1 data cache line being accessed is in the drowsy state,
an extra cycle is spent to “wake up” the cache line into the
normal state before starting the (two cycle) cache access.

The results of all the other architectures are presented
relative to the baseline WCU architecture in Fig. 1. The
baseline configuration uses the Way Cache with a latency of
one cycle that is accessed after the address computation cycle
(see Figure 3(a)).

On a Way Cache miss a standard parallel associative lookup
of all ways in the set is performed. Since all lines in the L1
cache that are not pointed to by a Way Cache entry are kept
in a drowsy state, an extra cycle is required to wake up all
the lines in the set before the standard lookup can commence.
After finding the desired address, the Way Cache is updated
with the address–way pair.

Another architecture evaluated uses an MRU predictor in-
stead of a Way Cache (see Figure 3(c)). It keeps one line in
each set as pointed by the predictor in the normal state and
all the other lines in the set in the drowsy state. For example
for a 64KB 4–way set associative cache with 64 byte lines,
the number of active lines can be as high as 256 lines. The
actual number of active lines is actually smaller as shown in
a previous study [23]. This configuration is called MRU.

The number of active lines when using the MRU predictor
can be further reduced by putting all active lines in a drowsy
state after N cycles, as proposed in [5]. This configuration is
called MRUR and uses N=2000.

The MRU prediction accuracy can be increased by using the
MMRU predictor which tracks the last 2 lines accessed in a set.
The reset technique was also applied to this architecture. The
two MRU lines corresponding to each predictor entry are only
put in the normal state one by one as they are accessed in order
to minimize static energy consumption. This configuration is
called MMRUR.

The techniques proposed in this paper are combined in an
architecture that is called ”WCU with Prediction” (configura-
tion PWCU), which only uses the WCU result if the predictor
was correct in specifying the fast AGU. If the prediction
was incorrect then the standard (parallel) L1 data lookup is
performed ignoring the WCU result. A standard lookup is also
performed when the 48b AGU is predicted, without attempting
to access the WCU.

Another version of the new architecture is called ”Predicted
Always access Way Cache Unit” (configuration PAWCU). This
architecture always accesses the WCU, but in different cycles
depending on the AGU prediction. The WCU is accessed in
the Execute stage if the fast AGU was predicted, otherwise
it is accessed in the next cycle. On fast AGU misprediction
detection, the WCU is accessed again using the 48b AGU
result in the cycle after Execute stage. Obviously, the PAWCU
configuration will have in some cases a longer access latency,
but it will also benefit from extra hits in the way cache.

80
87
94

101
108
115
122

a)
 %

80
121
162
203
244
285

b)
 %

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

A
V

G
_i

nt

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
V

G
_f

p80
121
162
203
244
285

c)
 %

MRU MRUR MMRUR PWCU PAWCU

Fig. 4. a) Execution time b) EDP c) ED2P relative to baseline (16way L1 using a 16entry WCU)

60
113
166
219
272
325
378

a)
 %

80
97

114
131
148
165

b)
 %

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rt

ex vp
r

A
V

G
_i

nt

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

A
V

G
_f

p70
113
156
199
242
285

c)
 %

MRU MRUR MMRUR PWCU PAWCU

Fig. 5. a) dynamic, b) static, c) total energy relative to baseline (16way L1 using a 16entry WCU)

D. Analysis

The main advantage of the design proposed in this paper is
that it allows for a reduction in the L1 data cache dynamic
and static energy consumption, but it does so without suffering
from a performance penalty. The baseline configuration incurs
a 5% performance degradation for SpecINT due to the addition
of the WCU. Figure 4 shows the relative execution speed for a
16–way set associative L1 cache using the various techniques.
It can be observed that the PWCU and PAWCU techniques
have the best performance of all simulated configurations, with
a relative speed of 96%, on average, for the SpecINT bench-
marks. No significant speedup was observed, on average, for
the SpecFP benchmarks, although some benchmarks showed
an improvement. The WCU designs have better performance
because in case of a successful prediction for the narrow
AGU, no extra cycles are spent accessing the Way Cache.
The execution time is faster than that of the baseline config-
uration for PAWCU (shown as less than 100%). This almost
completely eliminates the baseline performance degradation.

The difference in speed between the PWCU and PAWCU
configurations is less than 0.1%.

The average relative dynamic, static and total energy for
the same 16 way set associative L1 are presented in Figure 5.
Of the WCU designs, the PAWCU configuration has the
best dynamic energy savings due to the fact that it has an
almost identical Way Cache hit rate as the baseline WCU
configuration. This is explained by the fact that the PAWCU
configuration accesses the Way Cache regardless of the AGU
prediction results. Thus, from the Way Cache access point
of view, the only difference between the PAWCU and WCU
designs is timing.

The MRU configurations save less dynamic energy due
to a lower way prediction rate. This can be observed for
benchmarks like apsi, art, galgel and mgrid where the dynamic
energy savings of the MRU configurations are dramatically
less than that of the WCU configurations. MRU predictors
have a worst case behavior when different lines from the
same set are read/written in consecutive accesses. This type
of access occurs in some benchmarks and it is reflected in

AVG_int AVG_fp65

75

85

95

105

115

125
a)

 %

MRU MRUR MMRUR PWCU PAWCU AVG_int AVG_fp65

103

141

179

217

255

b)
 %

Fig. 6. Relative a)Dynamic and b)Static Energy for a 4way L1 using a
16entry WCU

AVG_int AVG_fp65

77

89

101

113

125

a)
 %

MRU MRUR MMRUR PWCU PAWCU

AVG_int AVG_fp65

86

107

128

149

170

b)
 %

Fig. 7. Relative a)Dynamic and b)Static Energy for a 8way L1 using a
16entry WCU

the higher missprediction rate of the MRU predictors for
benchmarks like art, fma3d and mgrid. The effect of the
improvement in the prediction rate due to using a Multiple–
MRU predictor can be observed in the results for the mgrid
benchmark: 320% for MRU vs 225% for MMRUR.

Due to the periodic reset of the predictor, the MRUR config-
uration has lower dynamic energy savings compared to MRU:
125% vs 115% on the average for SpecINT. The dynamic
energy savings of the multiple MRU predictor configuration
are also throttled by the reset policy and are, on average, just
1% better than MRU for SpecINT.

The PAWCU configuration saves more dynamic energy
when compared to the PWCU because it has a higher number
of WCU hits. The gap, fma3d and wupwise benchmarks have
low AGU predictor hit rates, and this is reflected in the fact
that for these benchmarks the dynamic energy savings for the
PWCU configuration are smaller than the ones for the PAWCU
configuration.

The static energy results show that the MRU-noreset con-
figuration has for most benchmarks the lowest savings due to
the fact that it keeps the highest number of lines in the high
leakage state (one line per set). The static energy includes
the energy overhead incurred while waking up drowsy lines.
As a general trend the WCU configurations have higher static
energy savings due to the fact that they only keep 16 cache
lines in the normal state, i.e. one line per WCU entry. The
MMRUR design saves less static energy compared to the
MRUR design due to the fact that it keeps more lines in the
active state.

The total data cache energy consumed by the PAWCU
configuration is the lowest total energy of all configurations at
94%. Recall that the baseline configuration also used WCU, so
it is already energy optimized. The best MRU configuration

AVG_int AVG_fp65

82

99

116

133

150

a)
 %

MRU MRUR MMRUR PWCU PAWCU

AVG_int AVG_fp65

78

91

104

117

130

b)
 %

Fig. 8. Relative a)Dynamic and b)Static Energy for a 16way L1 using a
16entry WCU

(MMRUR), on the other hand, consumes 25% more energy
than the baseline.

The Energy–Delay Product and Energy–Delay2 Product re-
sults in Figure 4 follow the energy savings trend, but the WCU
designs have higher savings due to their better performance
i.e. a smaller delay factor in the energy-delay products. The
Energy-Delay2 Product for the PAWCU configuration is the
lowest at 90%. The best MRU configuration (MMRUR), on
the other hand, has a 27% higher ED2 than the baseline.

The accuracy of the MRU predictor decreases with in-
creased L1 cache associativity, whereas the Way Cache ac-
curacy is not influenced by the cache associativity. All the
results presented up to now were for the 16–way set associative
cache. The decreasing efficiency of the MRU predictor can
be observed in results for relative dynamic and static energy
savings in Figures 6– 8 for 4, 8 and 16–way set associative
caches. It can be observed that for 4–way caches the MRU
design has better dynamic energy savings for SpecINT than the
WCU configurations. For higher associativities or for SpecFP
this advantage disappears. The WCU approach always has
highest static energy savings.

AVG_int AVG_fp65

78

91

104

117

130

%

MRU MRUR MMRUR PWCU PAWCU

Fig. 9. Relative ED2P for a 4way L1 using a 16entry WCU

AVG_int AVG_fp65

77

89

101

113

125

137

%

MRU MRUR MMRUR PWCU PAWCU

Fig. 10. Relative ED2P for a 8way L1 using a 16entry WCU

AVG_int AVG_fp65

81

97

113

129

145
%

MRU MRUR MMRUR PWCU PAWCU

Fig. 11. Relative ED2P for a 16way L1 using a 16entry WCU

IV. CONCLUSION

This paper introduced a novel architecture that enables
significant dynamic and static energy savings for highly as-
sociative L1 data caches. The proposed technique needs only
a small amount of additional hardware: a 128-entry 1 bit
predictor, one 16- and one 3-bit adder and a 16-entry way
cache (i.e. a 16-entry CAM). Using fast address generation
and pipelined way cache look up, the performance penalty
introduced by way cache lookup was reduced to almost zero.

By putting all cache lines into drowsy mode except those
that are present in the way cache, this technique achieves, on
average, 30% more static energy reduction than using Multiple
MRU with reset for a 16-way set associative L1 data cache.
When the technique is applied to the 64KB cache with 64-byte
lines, at most 1.5% (16 out of 1024) of the lines are kept active.
Therefore, it is likely that no further reduction in static energy
consumption is possible using the state–preserving techniques.
Furthermore, it is hardly worth reducing the L1 cache static
energy any further. The way cache also enables us to avoid the
parallel look up of all ways in a set during a cache access. This
results, on average, in 27% more dynamic energy saving than
for Multiple MRU with reset for the above cache configuration.
The WCU architectures that is always accessed regardless of
fast or regular AGU prediction/use is shown to deliver the
highest average savings and the best energy-delay product.

ACKNOWLEDGMENT

The authors would like to thank Rubén González, Adrián
Cristal for fruitful discussions.

REFERENCES

[1] G. Hinton and et al, “The microarchitecture of the Pentium 4 processor,”
Intel Technology Journal, vol. 4, 2001.

[2] D. Boggs and et al, “The microarchitecture of the Intel Pentium4
processor on 90nm technology,” Intel Technology Journal, Feb. 2004.

[3] J. Davis and et al, “A 5.6GHz 64KB dual-read data cache for the
POWER6 processor,” in ISSCC, 2006.

[4] S. Borkar, “Low power design challenges for the decade (invited talk),”
in ASP–DAC, 2001.

[5] K. Flautner and et al, “Drowsy caches: simple techniques for reducing
leakage power,” in ISCA, 2002.

[6] D. Nicolaescu and et al, “Reducing power consumption for high-
associativity data caches in embedded processors,” in DATE, 2003.

[7] R. Min, W.-B. Jone, and Y. Hu, “Location cache: a low-power l2 cache
system,” in ISLPED, 2004.

[8] K. Inoue and K. Murakami, “Way-predicting set-associative cache for
high performance and low energy consumption,” in ISLPED, 1999.

[9] C. McNairy and D. Soltis, “Itanium 2 processor microarchitecture,”
IEEE Micro, vol. 23, no. 2, pp. 44–55, Mar./Apr. 2003.

[10] MIPS R10000 Microprocessor User’s Manual, MIPS Technologies, Inc.,
1996, version 2.0.

[11] R. E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, vol. 19,
no. 2, pp. 24–36, Mar./Apr. 1999.

[12] W. Tang and et al, “Simultaneous way-footprint prediction and branch
prediction for energy savings in set-associative instruction caches,” in
WPMRT, 2001.

[13] A. Veidenbaum and D. Nicolaescu, “Low energy, highly-associative
cache design for embedded processors,” in ICCD, 2004.

[14] M. Powel and et al, “Gated-vdd : A circuit technique to reduce leakage
in deep-submicron cache memories,” in ISLPED, 2000.

[15] Y. Li and et al, “State-preserving vs. non-state-preserving leakage control
in caches,” in DATE, 2004.

[16] S. Kaxiras and et al, “Cache decay: exploiting generational behavior to
reduce cache leakage power,” in ISCA, 2001.

[17] E. S. Tam and et al, “Active management of data caches by exploiting
reuse information,” IEEE TC, vol. 48, no. 11, pp. 1244–1259, 1999.

[18] S. Petit, J. Sahuquillo, J. M. Such, and D. Kaeli, “Exploiting temporal
locality in drowsy cache policies,” in CF, 2005.

[19] E. Witchel and et al, “Direct addressed caches for reduced power
consumption,” in MICRO-34, 2001.

[20] R. Gonzalez and et al, “A content aware integer register file organiza-
tion,” in ISCA, 2004.

[21] D. Burger and T. M. Austin, “The SimpleScalar tool set,” University of
Wisconsin, Tech. Rep. TR-97-1342, 1997.

[22] “Cacti4,” http://quid.hpl.hp.com:9081/cacti/.
[23] K. So and R. Rechtshaffen, “Cache operations by mru change,” in ICCD,

1986.

