
Area-Aware Optimizations for Resource Constrained
Branch Predictors Exploited in Embedded Processors

Babak Salamat
School of Information and Computer Sciences

University of California, Irvine
Irvine, CA USA

bsalamat@ics.uci.edu

Amirali Baniasadi, Kaveh Jokar Deris
Department of Electrical and Computer Engineering

University of Victoria
Victoria, BC Canada

{amirali, kaveh}@ece.uvic.ca

Abstract— Modern embedded processors (e.g., Intel’s XScale)
use small and simple branch predictors to improve performance.
Such predictors impose little area and power overhead but may
offer low accuracy. As a result, branch misprediction rate could
be high. Such mispredictions result in longer program runtime
and wasted activity. To address this inefficiency, we introduce
two optimization techniques: First, we introduce an adaptive and
low-complexity branch prediction technique. Our branch
predictor removes up to a maximum of 50% of the branch
mispredictions of a bimodal predictor. This results in
improving performance by up to 16%. Second, we present front-
end gating techniques and reduce wasted activity up to a
maximum of 32%.

I. INTRODUCTION
Our goal in this work is to improve performance and power

dissipation in embedded processors. This is done by a)
improving the branch prediction accuracy and b) stopping
wrong path instructions from entering the pipeline. We
introduce efficient, simple and low-overhead techniques to
reduce branch misprediction rate and speculation cost
considerably.

Traditionally, using branch prediction has been restricted to
high-performance processors. However, in recent years,
embedded processors such as the Intel’s XScale processor have
used simple predictors to improve ILP [7].

Branch prediction is essential as it provides steady
instruction flow at the fetch stage. Unfortunately, predictors are
not perfect and make mispredictions. Such branch
mispredictions result in longer program runtimes and energy
wasted down the mispredicted instruction path. It is expected
that as embedded processors exploit deeper pipelines, branch
misprediction cost will also increase. To avoid an increase in
misprediction cost designing more accurate yet area- and
power-efficient branch predictors is necessary.

Previous study has introduced several highly accurate
branch prediction techniques for high-performance processors
[2, 8, 11, 13, 14]. Unfortunately, embedded processors perform
under resource, area and power constraints and do not afford
the complex techniques used in highly accurate branch
predictors.

To address this inefficiency in this work we present two
classes of optimization techniques and make the following
contributions:

First, we introduce an Adaptive, Small and Low-complexity
branch prediction technique, referred to as ASAL. ASAL relies
on periodic branch instruction behavior measurement to pick
the best predictor for different program phases. Accordingly,
we reduce the number of branch mispredictions considerably.

Second, we propose a set of power-efficient and area-aware
pipeline gating methods and reduce misprediction cost while
maintaining performance. As pipeline gating relies on accurate
branch confidence estimation [10], we also introduce low-
overhead branch confidence estimation techniques.

The rest of the paper is organized as follows. In Section 2
we discuss ASAL. In Section 3 we explain area-aware pipeline
gating in more details. In Section 4 we present methodology
and results. In Section 5 we review related work. Finally, in
Section 6 we offer concluding remarks.

II. ASAL
Accurate branch prediction requires using different

information regarding instruction PC and local and global
history simultaneously. While some branch instructions are
better predicted using global history, there are others that are
more accurately predicted if local history is used. The bimodal
predictor [11] (referred here as BMD) uses instruction PC to
make branch predictions while global gshare [11] (referred to
as GG) is an example of a predictor that makes predictions
based on global history. Figure 1 shows the schematic of each
predictor.

Figure 1. a) BMD: Instruction PC is used to access predictor. b) GG:
Instruction PC is xor’ed with the global history to access predictor.

CountersPC Counters

Global History

PC

XOR

(a) (b)

Figure 2. Misprediction rate for BMD and GG predictors. Lower is better.

In Figure 2 we report the misprediction rate for a subset of
MiBench benchmarks [5] studied here, assuming either 128-
entry BMD or a 128-entry GG is used. We pick 128-entry
predictors as this is the same size used by the XScale
embedded processor. As reported, mispredictions are quite
frequent and can be as high as 27% (e.g., for adpcm_c). This is
partially due to the simplicity of the predictors used. As
presented in Figure 2, while BMD does a better job for branch
instructions in some applications (e.g., fft), for others (e.g.,
adpcm_c) GG is a better choice. In other words, while branch
instructions within one application are better predicted using
global history, branch instructions within another application
will benefit if global history is not taken into account.

One way to pick the right predictor for each branch
instruction is using the combined predictor and exploiting
multiple predictors [11]. However, in addition to the overhead
associated with using multiple predictors, picking the best
predictor per branch requires additional structures (e.g., the
selector) which may not be affordable in an embedded
processor. Moreover, combined predictors rely on pre-decided
configurations and follow the one-size-fits-all approach which
appears to be non-optimal across all applications.

To avoid such problems, we avoid picking the best
predictor per-branch. Rather our goal is to find the right
predictor for the right interval.

We investigated branch instruction behavior change during
regular intervals. Our study shows that no single predictor
performs best across all applications. Moreover, even within an
application, the best prediction scheme may change from one
interval to the other.

Based on the above, our goal is to find the best prediction
scheme (GG or BMD) for each interval. Once the appropriate
scheme is identified, we use the same area and resources used
by the previous scheme to implement the alternative scheme.
Note that we pick BMD as it is already being used by
commercial processors and GG as it has a structure similar to
BMD (see Figure 1) and is highly accurate for many
applications. As such, switching from one scheme to another
comes with very little complexity and could be achieved in a
fast and efficient manner (more on this later).

We introduce both static and dynamic techniques. In our
static approach, we use previously recorded accuracy for BMD
and GG during fixed intervals (e.g., 2 million instructions) to
pick the best scheme. In our dynamic approach, we
dynamically measure how each predictor performs during short
evaluation periods. We use the result of the evaluations to pick
one of the two predictors for longer periods.

A. Static ASAL
Static ASAL (S-ASAL) relies on profiling. We store the

accuracy of BMD and GG during 2M instruction intervals of
execution of a certain application. Then we use this data to
select the more accurate scheme for each interval. A possible
implementation of this technique is done by adding an
instruction to the instruction set to perform switching between
predictors. A customized compiler can use the profiling
information to add the instruction to the appropriate locations
of the application code. The processor uses a single bit to
switch the prediction scheme when necessary.

B. Dynamic ASAL
Dynamic ASAL (D-ASAL) evaluates how BMD and GG

perform during short evaluation periods. D-ASAL enters the
evaluation period after executing a pre-decided number of
instructions. During the evaluation period, D-ASAL evaluates
BMD and GG by using each to predict a fixed number of
consecutive branch instructions executed in the application. At
the end of the evaluation period, D-ASAL compares the
number of mispredictions caused by each of the schemes.
ASAL picks the scheme with the less number of mispredictions
and uses the scheme during the next interval. Once one interval
is finished, D-ASAL repeats the same evaluation process again.

The evaluation period is measured in terms of the number
of branch instructions executed. Our study shows that, for the
128-entry predictor, best results are achieved when the
evaluation period is 1024 branches. To decide the interval time,
we tested many possibilities. The best result was achieved for
intervals of two million instructions. Our experiments also
show that the result is better if we do not reset the predictors at
the beginning of the evaluation periods.

C. Hardware Implementation
Both S-ASAL and D-ASAL are used to find the better

prediction scheme. Thus the hardware structure of branch
predictor is the same for both methods.

Figure 3 shows the schematic of ASAL. As presented the
same table is used to implement both BMD and GG. A MUX is
used to access this table using the PC (if BMD is being used) or
PC xor’ed with global history (if GG is being used). The GG
Branch History Register and PHT are not updated
speculatively. The MUX is controlled by the evaluation
process. The evaluating algorithm is shown in Figure 4.

The overhead associated with ASAL is negligible. ASAL
requires a maximum of three counters to count the number of
mispredictions and keep record of evaluation periods and time
intervals. For a 256-entry predictor, where the evaluation
period is 2048 branches and the time interval is 2M
instructions, we need two 11 bit counters to store

0%
5%

10%
15%

20%
25%

30%

ad
pcm

_c

ad
pcm

_d

bas
icm

ath fft

patr
ici

a
qso

rt

Ave
ra

ge

BMD GG

mispredictions in the evaluation phase and a 21 bit counter to
keep track of evaluation periods and time intervals. The overall
storage area required is 43 bits which is only 8% of the table
size.

Figure 3. Schematic of ASAL

Figure 4. The evaluation algorithm

III. AREA-AWARE PIPELINE GATING
Possible branch mispredictions result in fetching instruction
from the wrong path. We refer to the mistakenly fetched

instructions as wasted activity (WA). Note that mispredicted
instructions do not commit and are flushed as soon as the
mispredicted branch is resolved. Our study shows that WA can
be more than 23% for embedded applications. Figure 5 reports
WA for the applications studied here.

Figure 5. Extra Wasted Activities. Lower is better.

We stall instruction fetch when there is a high chance that
the fetched instructions will be flushed. We gate the pipeline
front-end when there is low confidence in the executed
instructions. As such we need mechanisms to identify low
confidence branches.

Previously suggested estimators rely on complex structures
which are not affordable in an embedded processor. To apply
front-end gating in the embedded space we introduce low-
overhead techniques.

A. Static Confidence Estimation
The static confidence estimation technique is based on

profiling. We execute each benchmark and keep a record of the
low confidence branches. We consider a static branch as low
confidence if its misprediction rate is over 25%. We gate the
pipeline when there are at least two low confidence branches
inside the pipeline.

B. Dynamic Confidence Estimation
1) History-based Confidence Estimation: In this method

we assume that recently mispredicted branches are more likely
to be mispredicted in the future. As such we keep track of
recently fetched branch instructions’ confidence using a very
small 16-bit structure. This structure is a PC-indexed 8-entry
table where there is a 2-bit saturating counter associated with
each entry. The 2-bit counter is incremented for accurately
predicted branches. We reset the associated counter if the
branch is mispredicted. We look up this structure at fetch and
in parallel to probing the branch predictor. If the 2-bit counter
is not saturated we consider the branch as low confidence. The
table and counters are updated at the commit stage and after the
actual outcome of a predicted branch is known.

Previously suggested pipeline gating methods gate the
front-end if the number of low-confidence branches exceeds a
pre-decided threshold [10]. We take into account instruction

0%

5%

10%

15%

20%

25%

ad
pcm

_c

ad
pcm

_d

bas
icm

ath fft

patr
ici

a
qso

rt

Ave
ra

ge

N Y

Start

Apply BMD predictor

Count Mispredictions

Evaluation
Interval passed?

Apply GG predictor

Count Mispredictions

Evaluation
Interval passed ?

Compare Mispredictions
And Choose proper predictor

2M Inst.
Time-interval

passed ?

N

N

Pattern History
Table (PHT)

PC

M
U
X

Branch History Reg.

X
O
R

Evaluation
Algorithm

behavior changes in embedded applications and add a level of
adaptivity and decide the gating threshold dynamically. To do
this, we use the number of in-flight branch instructions and
average misprediction rate.

For applications with small number of branches, aliasing is
low and our confidence estimator is more likely to do a more
effective job. This is particularly true if average misprediction
rate for an application is low. As such, for applications with
lower number of branches and low misprediction rate, we gate
the pipeline if the number of low-confidence branches exceeds
one. For applications with higher number of branches and
higher misprediction rates, we gate the pipeline if the number
of low confidence branches exceeds two.

Accordingly, we measure instructions per branch (IPB)
every 256 instructions and set the threshold to two if IPB drops
below 4 (indicating a high number of branch instructions) and
if the misprediction rate is above 10%.

2) Predictor-based Confidence Estimation: In the second
method we assume that the saturating counters which are
already being used by the branch predictor indicate branch
instruction confidence. By using the already available
structures we minimize the hardware overhead.

At fetch, we mark a branch as low confidence if the
corresponding counter is not saturated. We gate the pipeline if
the number of low-confidence branches exceeds a dynamically
decided threshold. We increase the gating threshold from 1 to 2
if IPB drops below 4.

3) Combined Confidence Estimation: Each of the two
methods discussed above captures a different group of low-
confidence branches. To identify a larger number of low-
confidence branches, we combine the two techniques: a branch
is considered low-confidence if either the history-based or
predictor-based confidence estimator marks it as low-
confidence. By using this technique we achieve higher WA
reduction while maintaining performance.

C. Area Overhead
The history-based technique uses an 8-entry confidence

estimator containing eight 2-bit counters. We also need an 8-
bit counter to count the instruction intervals, a 6-bit saturating
counter to count the number of branches in each interval and a
3-bit saturating counter to keep track of mispredictions. The
total area requirement is equivalent to 33 bits.

The predictor-based method uses an 8-bit counter and a 6-
bit saturating counter to keep track of instruction intervals and
the number of mispredicted branches respectively. Thus, the
total required area is only 14 bits.

The combined method uses the same structures used by the
history-based technique. It also uses the already available
branch predictor counters. Thus, the area overhead is 33 bits.

IV. METHODOLOGY AND RESULTS
In this section, we present our analysis and simulation

results for ASAL and pipeline gating methods. We report

predictor accuracy in 4.1. We report wasted activity reduction
in Section 4.2. Performance is reported in Section 4.3.

As explained earlier, Intel’s XScale processor uses a BMD
predictor. As such, we compare ASAL to this predictor. We
also report how replacing the BMD with a GG with the same
size impacts mispredictions rate.

An alternative to ASAL is using the same resources to
implement the combined scheme [11]. As explained earlier, the
combined predictor may not be the best choice for embedded
processors. Nonetheless, to provide better understanding, we
also compare ASAL to a combined predictor which uses the
same overall area.

We used a subset of MiBench benchmark suite compiled
for MIPS instruction set. All benchmarks were run to
termination. We performed all simulations on a modified
version of the SimpleScalar v3.0 tool set [1]. Configuration of
the processor modeled was similar to that of Intel’s XScale
processor. Table 1 shows the configuration used. To show how
ASAL impacts different predictor sizes we report for 128- and
256-entry predictors. Table 2 also shows the configurations of
the branch predictors used.

TABLE 1. PROCESSOR BASE CONFIGURATION

Pipeline Length 5 stages

Issue Width In-Order: 2

Functional Units 1 I-ALU, 1 F-ALU, 1 I-
MUL/DIV, 1 F-MUL/DIV

BTB 128 entries

Main Memory Infinite, 50 cycles

Inst/Data TLB 32 entries, fully associative

L1 - Instruction/Data Caches 32K, 32-way SA, 32-byte blocks,
1 cycle

L2 Cache None

Load/Store queue 8 entries

Register Update Unit 8 entries

Branch Mispred. Penalty 4 cycles

TABLE 2. BRANCH PREDICTORS’ CONFIGURATIONS

 128 entries 256 entries

Combined

32-entry BMD / 64-
entry GG with 6-bit
history / 32-entry
selector

64-entry BMD / 128-
entry GG with 7-bit his-
tory / 64-entry selector

Gshare 128 entry GG with 6
bit history

256 entry GG with 7 bit
history

Bimodal 128-entry 256-entry

A. Prediction Accuracy
Branch behavior may change during execution of a single

application and also on context switching when one application
is replaced by another. To simulate a realistic context
switching scenario, we simulated context switching for random
intervals between 100K and 1M instructions [12]. At the point

of context switch, we loaded all predictor tables and branch
history pattern structures with values obtained from predictor
tables generated by other applications. Our study shows that
similar accuracy improvements could be achieved for a single
application and in the absence of context switching. Therefore,
and in the interest of space, we only report predictor accuracy
in the presence of context switching.

In Figure 6, bars from left to right report misprediction rates for
BMD, GG, combined (CMB), S-ASAL and D-ASAL. For
most benchmarks ASAL outperforms other schemes
eliminating up to half of the mispredictions (i.e., for adpcm_c).
Moreover, while GG and CMB improve prediction for some
benchmarks (e.g., adpcm_c and adpcm_d) they do deteriorate it
for others (e.g., basicmath, patricia and fft). ASAL, either
reduces the number of mispredictions considerably (up to
50%), or maintains it at the same level compared to bimodal.

Figure 6. Bars from left to right show misprediction rate for BMD, GG, CMB,
S-ASAL and D-ASAL for (a) 128-entry (b) 256-entry. Lower is better.

B. Wasted Activity Reduction
Figure 7 shows WA reduction for the proposed front-end

gating techniques compared to XScale. On average, the
combined method has the highest WA reduction. Maximum
WA reduction is 32% (for adpcm_c).

C. Performance
Figure 8 reports performance for a processor that uses 128-

entry GG, CMB and D-ASAL compared to an XScale-like
processor. Average performance gains for GG, CMB and D-

ASAL are 2.1%, 2.3% and 3.2% respectively. Maximum
performance improvement is 16% (for adpcm_c).

Figure 7. WA reduction (a negative value means an increase in the amount of
WA). Higher is better.

Figure 8. Performance for 128-entry GG, CMB and D-ASAL compared to
BMD. Higher is better.

Figure 9. Performance after applying pipeline gating compared to a
conventional processor. Higher is better.

0%

5%

10%

15%

20%

25%

30%

ad
pc

m_c

ad
pc

m_d

ba
sic

math fft

pa
tri

cia
qs

or
t

Ave
ra

ge

0%

5%

10%

15%

20%

25%

30%

ad
pc

m_c

ad
pc

m_d

ba
sic

math fft

pa
tri

cia
qs

or
t

Ave
ra

ge

BMD GG CMB S-ASAL D-ASAL

95%

100%

105%

110%

115%

120%

ad
pcm

_c

adp
cm

_d

bas
icmath fft

pa
tri

cia
qs

or
t

Ave
rag

e

GG CMB D-ASAL

95%
96%
97%
98%
99%

100%
101%

ad
pcm

_c

ad
pcm

_d

bas
icm

ath fft

patr
ici

a
qso

rt

Ave
ra

ge

History-based CE Predictor-based CE
Combined CE Static CE

-5%
0%
5%

10%
15%
20%
25%
30%
35%

ad
pcm

_c

ad
pcm

_d

bas
icm

ath fft

patr
ici

a
qso

rt

Ave
ra

ge

History-based CE Predictor-based CE
Combined CE Static CE

(a)

(b)

In Figure 9 bars from left to right report performance for
history-based, predictor-based, combined and the static pipeline
gating methods compared to a processor similar to XScale
using a bimodal predictor that does not use pipeline gating.
Reportedly, static method has the lowest amount of IPC loss
which is less than 0.1%. Among the dynamic techniques
predictor-based method shows the lowest amount of
performance. Average performance loss is 0.14% for this
technique. Note that we improve performance for patricia when
using the predictor-based technique. Our studies show that it is
a result of an increase in the I-Cache hit rate after applying
pipeline gating.

V. RELATED WORK
Previous work has suggested highly accurate branch

predictors [2, 6, 8, 9, 11, 13, 14] for high-performance
processors. Our work is different as it focuses on embedded
processors.

Pasricha and Veidenbaum [12] studied the effect of context
switches on small predictors and proposed methods for
storing/restoring predictor tables. Dhodapkar and Smith [3]
proposed methods to store/restore significant bits of predictor
counters on context switches. ASAL is different from both
studies as it does not store and restore branch predictor tables.
Instead, we select the better prediction scheme based on branch
behavior in the new interval or context.

Juan et al. [9] proposed configuring the history length of
predictors dynamically to reduce misprediction rate. We pick
different prediction schemes instead of focusing on the history
length.

Manne et al. [10] introduced pipeline gating for high-
performance processors. Our study is different as we propose
adaptive low overhead techniques for embedded processors.

VI. CONCLUSION
In this work we presented different performance and power

optimization techniques for embedded processors. We
proposed ASAL as a low-complexity but adaptive technique to
reduce misprediction rate (up to 50%) and improve
performance (up to 16%) in embedded processors.

We also proposed low-overhead front-end gating
techniques for embedded processors. We showed that by using
simple confidence estimation techniques, it is possible to
reduce the number of mispredicted instructions fetched by up
to a maximum of 32% while maintaining performance.

ACKNOWLEDGMENT
This work was supported by the Natural Sciences and

Engineering Research Council of Canada, Discovery Grants
Program, Canada Foundation for Innovation, New
Opportunities Fund and the University of Victoria Fellowship.

REFERENCES
[1] Burger, D. C., Austin, T. M., “The SimpleScalar tool set,version 2.0,”

Computer Architecture News, 25(3):13–25, June 1997.

[2] Chang, P. Y., Hao, E., Yeh, T. Y., Patt, Y., “Branch classification: a new
mechanism for improving branch predictor performance,” In MICRO27,
pp. 22-31, New York, NY, USA, 1994.

[3] Dhodapkar, A. S., Smith, J. E., “Saving and Restoring Implementation
Context with co-Designed Virtual Machines,” Workshop on
Complexity-Effective Design, Jun. 2001.

[4] Grunwald, D., Klauser, A., Manne, S., Pleszkun, “A. Confidence
estimation for speculation control,” Proc. 25th Ann. Int’l Symp.
Computer Architecture, Jun. 1998.

[5] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T.,
Brown, R. B., “MiBench: A free, commercially representive embedded
benchmark suite,” IEEE 4th Annual Workshop on Workload
Characterization. 2001.

[6] Huang, M. C., Chaver, D., Pinuel, L., Prieto, M., Tirado, F.,
“Customizing the Branch Predictor to Reduce Complexity and Energy
Consumption,” In IEEE micro. Sep. 2003

[7] Intel, Intel XScale Microarchitecture. 2001.
[8] Jimenez, D., “Idealized piecewise linear branch prediction,” Proceedings

of the First Workshop Championship Branch Prediction in conjunction
with MICRO-37, December 2004.

[9] Juan, T., Sanjeevan, S., Navaro, J. J., “Dynamic History-Length Fitting:
A third level of adaptivity for branch prediction,” Proc. of the 25th Ann.
Int’l Symp. Computer Architecture, Jun. 1998.

[10] Manne, S., Klauser, A., Grunwald, D., “Pipeline Gating: Speculation
Control for Energy Reduction,” Proc. 25th Ann. Int’l Symp. Computer
Architecture, June 1998, 132-141.

[11] McFarling, S., “Combining Branch Predictors,” Tech. Note TN-36,
DECWRL, Jun. 1993.

[12] Pasricha, S., Veidenbaum, A., “Improving Branch Prediction Accuracy
in Embedded Processors in the Presence of Context Switches,” In 21st
Int’l Conf. Comp. Design, Oct. 2003.

[13] Seznec, A., “The O-GEHL branch predictor,” Proceedings of the First
Workshop Championship Branch Prediction in conjunction with
MICRO-37, December 2004.

[14] Tarjan, D., Skadron, K., Stan, M., “An ahead pipelined alloyed
perceptron with single cycle access time,” In Proceedings of the 5th
Workshop on Complexity-Effective Design, 2004.

