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Abstract— Modern embedded processors (e.g., Intel’s XScale) 
use small and simple branch predictors to improve performance. 
Such predictors impose little area and power overhead but may 
offer low accuracy. As a result, branch misprediction rate could 
be high. Such mispredictions result in longer program runtime 
and wasted activity. To address this inefficiency, we introduce 
two optimization techniques: First, we introduce an adaptive and 
low-complexity branch prediction technique. Our branch 
predictor removes up to a maximum of 50% of the branch 
mispredictions of a bimodal predictor. This results in    
improving performance by up to 16%.  Second, we present front-
end gating techniques and reduce wasted activity up to a 
maximum of 32%. 

I. INTRODUCTION 
Our goal in this work is to improve performance and power 

dissipation in embedded processors. This is done by a) 
improving the branch prediction accuracy and b) stopping 
wrong path instructions from entering the pipeline. We 
introduce efficient, simple and low-overhead techniques to 
reduce branch misprediction rate and speculation cost 
considerably.  

Traditionally, using branch prediction has been restricted to 
high-performance processors. However, in recent years, 
embedded processors such as the Intel’s XScale processor have 
used simple predictors to improve ILP  [7]. 

Branch prediction is essential as it provides steady 
instruction flow at the fetch stage. Unfortunately, predictors are 
not perfect and make mispredictions. Such branch 
mispredictions result in longer program runtimes and energy 
wasted down the mispredicted instruction path. It is expected 
that as embedded processors exploit deeper pipelines, branch 
misprediction cost will also increase. To avoid an increase in 
misprediction cost designing more accurate yet area- and 
power-efficient branch predictors is necessary.  

Previous study has introduced several highly accurate 
branch prediction techniques for high-performance processors 
[2, 8, 11, 13, 14]. Unfortunately, embedded processors perform 
under resource, area and power constraints and do not afford 
the complex techniques used in highly accurate branch 
predictors.  

To address this inefficiency in this work we present two 
classes of optimization techniques and make the following 
contributions: 

First, we introduce an Adaptive, Small and Low-complexity 
branch prediction technique, referred to as ASAL. ASAL relies 
on periodic branch instruction behavior measurement to pick 
the best predictor for different program phases. Accordingly, 
we reduce the number of branch mispredictions considerably. 

Second, we propose a set of power-efficient and area-aware 
pipeline gating methods and reduce misprediction cost while 
maintaining performance. As pipeline gating relies on accurate 
branch confidence estimation  [10], we also introduce low-
overhead branch confidence estimation techniques. 

The rest of the paper is organized as follows. In Section 2 
we discuss ASAL. In Section 3 we explain area-aware pipeline 
gating in more details. In Section 4 we present methodology 
and results. In Section 5 we review related work. Finally, in 
Section 6 we offer concluding remarks. 

II. ASAL 
Accurate branch prediction requires using different 

information regarding instruction PC and local and global 
history simultaneously. While some branch instructions are 
better predicted using global history, there are others that are 
more accurately predicted if local history is used. The bimodal 
predictor  [11] (referred here as BMD) uses instruction PC to 
make branch predictions while global gshare  [11] (referred to 
as GG) is an example of a predictor that makes predictions 
based on global history.  Figure 1 shows the schematic of each 
predictor. 

 

Figure 1. a) BMD: Instruction PC is used to access predictor. b) GG: 
Instruction PC is xor’ed with the global history to access predictor. 
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Figure 2. Misprediction rate for BMD and GG predictors. Lower is better. 

In Figure 2 we report the misprediction rate for a subset of 
MiBench benchmarks  [5] studied here, assuming either 128-
entry BMD or a 128-entry GG is used. We pick 128-entry 
predictors as this is the same size used by the XScale 
embedded processor. As reported, mispredictions are quite 
frequent and can be as high as 27% (e.g., for adpcm_c). This is 
partially due to the simplicity of the predictors used. As 
presented in Figure 2, while BMD does a better job for branch 
instructions in some applications (e.g., fft), for others (e.g., 
adpcm_c) GG is a better choice. In other words, while branch 
instructions within one application are better predicted using 
global history, branch instructions within another application 
will benefit if global history is not taken into account. 

One way to pick the right predictor for each branch 
instruction is using the combined predictor and exploiting 
multiple predictors  [11]. However, in addition to the overhead 
associated with using multiple predictors, picking the best 
predictor per branch requires additional structures (e.g., the 
selector) which may not be affordable in an embedded 
processor. Moreover, combined predictors rely on pre-decided 
configurations and follow the one-size-fits-all approach which 
appears to be non-optimal across all applications.  

To avoid such problems, we avoid picking the best 
predictor per-branch. Rather our goal is to find the right 
predictor for the right interval.  

We investigated branch instruction behavior change during 
regular intervals. Our study shows that no single predictor 
performs best across all applications. Moreover, even within an 
application, the best prediction scheme may change from one 
interval to the other.  

Based on the above, our goal is to find the best prediction 
scheme (GG or BMD) for each interval. Once the appropriate 
scheme is identified, we use the same area and resources used 
by the previous scheme to implement the alternative scheme. 
Note that we pick BMD as it is already being used by 
commercial processors and GG as it has a structure similar to 
BMD (see Figure 1) and is highly accurate for many 
applications. As such, switching from one scheme to another 
comes with very little complexity and could be achieved in a 
fast and efficient manner (more on this later). 

We introduce both static and dynamic techniques. In our 
static approach, we use previously recorded accuracy for BMD 
and GG during fixed intervals (e.g., 2 million instructions) to 
pick the best scheme. In our dynamic approach, we 
dynamically measure how each predictor performs during short 
evaluation periods. We use the result of the evaluations to pick 
one of the two predictors for longer periods. 

A. Static ASAL 
Static ASAL (S-ASAL) relies on profiling. We store the 

accuracy of BMD and GG during 2M instruction intervals of 
execution of a certain application.  Then we use this data to 
select the more accurate scheme for each interval. A possible 
implementation of this technique is done by adding an 
instruction to the instruction set to perform switching between 
predictors. A customized compiler can use the profiling 
information to add the instruction to the appropriate locations 
of the application code. The processor uses a single bit to 
switch the prediction scheme when necessary. 

B. Dynamic ASAL 
Dynamic ASAL (D-ASAL) evaluates how BMD and GG 

perform during short evaluation periods. D-ASAL enters the 
evaluation period after executing a pre-decided number of 
instructions. During the evaluation period, D-ASAL evaluates 
BMD and GG by using each to predict a fixed number of 
consecutive branch instructions executed in the application. At 
the end of the evaluation period, D-ASAL compares the 
number of mispredictions caused by each of the schemes. 
ASAL picks the scheme with the less number of mispredictions 
and uses the scheme during the next interval. Once one interval 
is finished, D-ASAL repeats the same evaluation process again. 

The evaluation period is measured in terms of the number 
of branch instructions executed. Our study shows that, for the 
128-entry predictor, best results are achieved when the 
evaluation period is 1024 branches. To decide the interval time, 
we tested many possibilities. The best result was achieved for 
intervals of two million instructions. Our experiments also 
show that the result is better if we do not reset the predictors at 
the beginning of the evaluation periods. 

C. Hardware Implementation 
Both S-ASAL and D-ASAL are used to find the better 

prediction scheme. Thus the hardware structure of branch 
predictor is the same for both methods. 

Figure 3 shows the schematic of ASAL. As presented the 
same table is used to implement both BMD and GG. A MUX is 
used to access this table using the PC (if BMD is being used) or 
PC xor’ed with global history (if GG is being used). The GG 
Branch History Register and PHT are not updated 
speculatively.  The MUX is controlled by the evaluation 
process. The evaluating algorithm is shown in Figure 4. 

The overhead associated with ASAL is negligible. ASAL 
requires a maximum of three counters to count the number of 
mispredictions and keep record of evaluation periods and time 
intervals. For a 256-entry predictor, where the evaluation 
period is 2048 branches and the time interval is 2M 
instructions, we need two 11 bit counters to store 
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mispredictions in the evaluation phase and a 21 bit counter to 
keep track of evaluation periods and time intervals. The overall 
storage area required is 43 bits which is only 8% of the table 
size. 

 

Figure 3. Schematic of ASAL 

 

Figure 4. The evaluation algorithm 

III. AREA-AWARE PIPELINE GATING  
Possible branch mispredictions result in fetching instruction 
from the wrong path. We refer to the mistakenly fetched 

instructions as wasted activity (WA). Note that mispredicted 
instructions do not commit and are flushed as soon as the 
mispredicted branch is resolved. Our study shows that WA can 
be more than 23% for embedded applications. Figure 5 reports 
WA for the applications studied here. 

 

Figure 5. Extra Wasted Activities. Lower is better. 

We stall instruction fetch when there is a high chance that 
the fetched instructions will be flushed. We gate the pipeline 
front-end when there is low confidence in the executed 
instructions. As such we need mechanisms to identify low 
confidence branches. 

Previously suggested estimators rely on complex structures 
which are not affordable in an embedded processor. To apply 
front-end gating in the embedded space we introduce low-
overhead techniques. 

A. Static Confidence Estimation 
The static confidence estimation technique is based on 

profiling. We execute each benchmark and keep a record of the 
low confidence branches. We consider a static branch as low 
confidence if its misprediction rate is over 25%. We gate the 
pipeline when there are at least two low confidence branches 
inside the pipeline. 

B. Dynamic Confidence Estimation 
1) History-based Confidence Estimation: In this method 

we assume that recently mispredicted branches are more likely 
to be mispredicted in the future. As such we keep track of 
recently fetched branch instructions’ confidence using a very 
small 16-bit structure. This structure is a PC-indexed 8-entry 
table where there is a 2-bit saturating counter associated with 
each entry. The 2-bit counter is incremented for accurately 
predicted branches. We reset the associated counter if the 
branch is mispredicted. We look up this structure at fetch and 
in parallel to probing the branch predictor. If the 2-bit counter 
is not saturated we consider the branch as low confidence. The 
table and counters are updated at the commit stage and after the 
actual outcome of a predicted branch is known.  

Previously suggested pipeline gating methods gate the 
front-end if the number of low-confidence branches exceeds a 
pre-decided threshold  [10]. We take into account instruction 
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behavior changes in embedded applications and add a level of 
adaptivity and decide the gating threshold dynamically. To do 
this, we use the number of in-flight branch instructions and 
average misprediction rate.  

For applications with small number of branches, aliasing is 
low and our confidence estimator is more likely to do a more 
effective job. This is particularly true if average misprediction 
rate for an application is low. As such, for applications with 
lower number of branches and low misprediction rate, we gate 
the pipeline if the number of low-confidence branches exceeds 
one. For applications with higher number of branches and 
higher misprediction rates, we gate the pipeline if the number 
of low confidence branches exceeds two. 

Accordingly, we measure instructions per branch (IPB) 
every 256 instructions and set the threshold to two if IPB drops 
below 4 (indicating a high number of branch instructions) and 
if the misprediction rate is above 10%. 

2) Predictor-based Confidence Estimation: In the second 
method we assume that the saturating counters which are 
already being used by the branch predictor indicate branch 
instruction confidence. By using the already available 
structures we minimize the hardware overhead.  

At fetch, we mark a branch as low confidence if the 
corresponding counter is not saturated. We gate the pipeline if 
the number of low-confidence branches exceeds a dynamically 
decided threshold. We increase the gating threshold from 1 to 2 
if IPB drops below 4. 

3) Combined Confidence Estimation: Each of the two 
methods discussed above captures a different group of low-
confidence branches. To identify a larger number of low-
confidence branches, we combine the two techniques: a branch 
is considered low-confidence if either the history-based or 
predictor-based confidence estimator marks it as low-
confidence. By using this technique we achieve higher WA 
reduction while maintaining performance. 

C. Area Overhead 
The history-based technique uses an 8-entry confidence 

estimator containing eight 2-bit counters.  We also need an 8-
bit counter to count the instruction intervals, a 6-bit saturating 
counter to count the number of branches in each interval and a 
3-bit saturating counter to keep track of mispredictions. The 
total area requirement is equivalent to 33 bits. 

The predictor-based method uses an 8-bit counter and a 6-
bit saturating counter to keep track of instruction intervals and 
the number of mispredicted branches respectively. Thus, the 
total required area is only 14 bits. 

The combined method uses the same structures used by the 
history-based technique. It also uses the already available 
branch predictor counters. Thus, the area overhead is 33 bits. 

IV. METHODOLOGY AND RESULTS 
In this section, we present our analysis and simulation 

results for ASAL and pipeline gating methods. We report 

predictor accuracy in 4.1. We report wasted activity reduction 
in Section 4.2. Performance is reported in Section 4.3. 

As explained earlier, Intel’s XScale processor uses a BMD 
predictor. As such, we compare ASAL to this predictor. We 
also report how replacing the BMD with a GG with the same 
size impacts mispredictions rate. 

An alternative to ASAL is using the same resources to 
implement the combined scheme  [11]. As explained earlier, the 
combined predictor may not be the best choice for embedded 
processors. Nonetheless, to provide better understanding, we 
also compare ASAL to a combined predictor which uses the 
same overall area. 

We used a subset of MiBench benchmark suite compiled 
for MIPS instruction set. All benchmarks were run to 
termination. We performed all simulations on a modified 
version of the SimpleScalar v3.0 tool set  [1]. Configuration of 
the processor modeled was similar to that of Intel’s XScale 
processor. Table 1 shows the configuration used. To show how 
ASAL impacts different predictor sizes we report for 128- and 
256-entry predictors. Table 2 also shows the configurations of 
the branch predictors used. 

TABLE 1. PROCESSOR BASE CONFIGURATION 

Pipeline Length 5 stages 

Issue Width In-Order: 2 

Functional Units 1 I-ALU, 1 F-ALU, 1 I-
MUL/DIV, 1 F-MUL/DIV 

BTB 128 entries 

Main Memory Infinite, 50 cycles 

Inst/Data TLB 32 entries, fully associative 

L1 - Instruction/Data Caches 32K, 32-way SA, 32-byte blocks, 
1 cycle 

L2 Cache None 

Load/Store queue 8 entries 

Register Update Unit 8 entries 

Branch Mispred. Penalty 4 cycles 

TABLE 2. BRANCH PREDICTORS’ CONFIGURATIONS 

 128 entries 256 entries 

Combined 

32-entry BMD / 64-
entry GG with 6-bit 
history / 32-entry 
selector 

64-entry BMD / 128-
entry GG with 7-bit his-
tory / 64-entry selector 

Gshare 128 entry GG with 6 
bit history 

256 entry GG with 7 bit 
history 

Bimodal 128-entry 256-entry 

A. Prediction Accuracy 
Branch behavior may change during execution of a single 

application and also on context switching when one application 
is replaced by another.  To simulate a realistic context 
switching scenario, we simulated context switching for random 
intervals between 100K and 1M instructions  [12]. At the point 



of context switch, we loaded all predictor tables and branch 
history pattern structures with values obtained from predictor 
tables generated by other applications. Our study shows that 
similar accuracy improvements could be achieved for a single 
application and in the absence of context switching. Therefore, 
and in the interest of space, we only report predictor accuracy 
in the presence of context switching. 

In Figure 6, bars from left to right report misprediction rates for 
BMD, GG, combined (CMB), S-ASAL and D-ASAL. For 
most benchmarks ASAL outperforms other schemes 
eliminating up to half of the mispredictions (i.e., for adpcm_c).  
Moreover, while GG and CMB improve prediction for some 
benchmarks (e.g., adpcm_c and adpcm_d) they do deteriorate it 
for others (e.g., basicmath, patricia and fft). ASAL, either 
reduces the number of mispredictions considerably (up to 
50%), or maintains it at the same level compared to bimodal. 

 

Figure 6. Bars from left to right show misprediction rate for BMD, GG, CMB, 
S-ASAL and D-ASAL for (a) 128-entry (b) 256-entry. Lower is better. 

B. Wasted Activity Reduction 
Figure 7 shows WA reduction for the proposed front-end 

gating techniques compared to XScale. On average, the 
combined method has the highest WA reduction. Maximum 
WA reduction is 32% (for adpcm_c). 

C. Performance 
Figure 8 reports performance for a processor that uses 128-

entry GG, CMB and D-ASAL compared to an XScale-like 
processor. Average performance gains for GG, CMB and D-

ASAL are 2.1%, 2.3% and 3.2% respectively.  Maximum 
performance improvement is 16% (for adpcm_c). 

 

Figure 7. WA reduction (a negative value means an increase in the amount of 
WA). Higher is better. 

 

Figure 8. Performance for 128-entry GG, CMB and D-ASAL compared to 
BMD. Higher is better. 

 

Figure 9. Performance after applying pipeline gating compared to a 
conventional processor. Higher is better. 
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In Figure 9 bars from left to right report performance for 
history-based, predictor-based, combined and the static pipeline 
gating methods compared to a processor similar to XScale 
using a bimodal predictor that does not use pipeline gating. 
Reportedly, static method has the lowest amount of IPC loss 
which is less than 0.1%. Among the dynamic techniques 
predictor-based method shows the lowest amount of 
performance. Average performance loss is 0.14% for this 
technique. Note that we improve performance for patricia when 
using the predictor-based technique. Our studies show that it is 
a result of an increase in the I-Cache hit rate after applying 
pipeline gating. 

V. RELATED WORK 
Previous work has suggested highly accurate branch 

predictors [2, 6, 8, 9, 11, 13, 14] for high-performance 
processors. Our work is different as it focuses on embedded 
processors.  

Pasricha and Veidenbaum  [12] studied the effect of context 
switches on small predictors and proposed methods for 
storing/restoring predictor tables. Dhodapkar and Smith  [3] 
proposed methods to store/restore significant bits of predictor 
counters on context switches. ASAL is different from both 
studies as it does not store and restore branch predictor tables. 
Instead, we select the better prediction scheme based on branch 
behavior in the new interval or context. 

Juan et al.  [9] proposed configuring the history length of 
predictors dynamically to reduce misprediction rate.  We pick 
different prediction schemes instead of focusing on the history 
length.  

Manne et al.  [10] introduced pipeline gating for high-
performance processors. Our study is different as we propose 
adaptive low overhead techniques for embedded processors. 

VI. CONCLUSION 
In this work we presented different performance and power 

optimization techniques for embedded processors. We 
proposed ASAL as a low-complexity but adaptive technique to 
reduce misprediction rate (up to 50%) and improve 
performance (up to 16%) in embedded processors. 

We also proposed low-overhead front-end gating 
techniques for embedded processors. We showed that by using 
simple confidence estimation techniques, it is possible to 
reduce the number of mispredicted instructions fetched by up 
to a maximum of 32% while maintaining performance. 
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