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Abstract

While memory-safe and type-safe languages have been
available for many years, the vast majority of software is
still implemented in type-unsafe languages such as C/C++.
Despite massive concerted efforts by software vendors such
as Microsoft to eliminate buffer overflow vulnerabilities
through automated and manual code review, they continue
to be found and exploited. We present a novel approach
that accepts the existence of overflow vulnerabilities and
uses parallelism available through current and future multi-
core architectures to detect vulnerabilities by monitoring
the parallel execution of several slightly varying instances
of the same application. During regular execution each
instance performs equivalent computations. When an at-
tacker attempts to inject an attack vector through a buffer
overflow vulnerability, however, each instance reacts dif-
ferently due to the variances we introduced into each in-
stance. We describe our prototype implementation of such
a parallelism-based buffer overflow detection system and
demonstrate that it is capable of stopping buffer overflow
vulnerabilities using actual exploit codes for the popular
Apache web server. The experimental results show that the
runtime overhead of our parallel execution framework is
less than 10% on average.

1 Introduction

It has been almost 20 years since the appearance of the
“Morris Worm,” and buffer overflows are still the most com-
mon form of security vulnerability. Based on the National
Vulnerability Database [11], more than 72% of vulnerabili-
ties detected in 2006 are either buffer overflows or boundary
condition errors, which are closely related to buffer over-
flows. This class of vulnerability is widely used by remote
attackers because they present them with the ability to inject

and execute malicious code.

The simplest and most common form of buffer overflow
attack is to corrupt activation records on the stack. By over-
writing the return address in the activation record, an at-
tacker can cause the program to jump to injected code and
execute it. This form of attack is called a “stack smash-
ing attack”. In another form of buffer overflow attack, the
vulnerability is used to overwrite function pointers. In this
case, when the function is called, control is transferred to
the overwritten address which contains the attack code.

A novel approach to preventing the exploitation of buffer
overflow conditions accepts the inevitable existence of vul-
nerabilities and instead only ensures that they are never ex-
ploited. In this approach, which we call “Multi-Variant
Code Execution,” a few slightly different instances of the
same program are run on multiple disjoint processing el-
ements (“cores”). An example of a multi-variant system
is a system that runs two semantically, but not structurally
equivalent instances of a program simultaneously. In this
case, each instance grows the execution stack in a different
direction. If a buffer overflow is exploited in such a sys-
tem, the injected code will have different effects on the two
variants. In the variant with a downward growing stack, the
buffer overflow can overwrite the return address of the vul-
nerable function, but in the other variant, the return address
remains intact, causing completely different behavior when
the function returns. A monitoring layer checks the output
of these program variants and raises an error flag if program
execution diverges. In order to avoid detection, an intruder
would have to corrupt all variants, by using different attack
vectors, in a way that their outputs remain equivalent. De-
vising such an attack vector is extremely difficult because
all input/output in such a system is synchronized across all
variants, and the attacker would not have the opportunity to
send different attack vectors to different variants.

Hardware evolution and the rapid spread of multi-core
microprocessors enables us to run a few variants simulta-



neously with minimal performance penalty. The growing
number of processing elements in microprocessors allows
us to run a sufficiently large number of instances simultane-
ously which is not only capable of detecting malicious code
injection, but can also repair partially corrupted systems us-
ing majority voting and re-initializing corrupted elements.

Multi-variant code execution is a disruptive technology
that eliminates a wide range of malware threats. It is also
effective against sophisticated computer viruses and worms.
Our scheme utilizes the parallel hardware features that are
already present on modern computers, many of which are
not utilized by typical desktop applications. Thus, it comes
essentially without any performance cost for most users. It
also achieves a very important goal: it obviates the need
to deploy many protective software programs such as anti-
viruses and firewalls.

The remainder of this paper is organized as follows. Fol-
lowing a discussion of related work we present our pro-
totype multi-variant execution environment consisting of
a program variance generator, which is described in Sec-
tion 3, and a parallel execution monitor, which we discuss
in Section 4. In Section 5 we show that our system is able to
thwart real-world buffer-overflows in existing software and
benchmark the performance overhead of the parallel and
multi-variant execution. Our paper ends with conclusions
in Section 6.

2 Related Work

We first discuss traditional methods of addressing buffer
overflow vulnerabilities. We then present multi-variant sys-
tems which use generated software variance to detect buffer
overflow conditions.

A number of techniques have been proposed to detect
or even prevent buffer overflow attacks. StackGuard [6] is
a compiler technique that uses a canary value to detect if
the return address has been overwritten. One of the short-
comings of StackGuard is that it cannot prevent function
pointer overwrites. Also, if certain conditions exist in the
code such that a pointer can be overwritten, an attacker can
alter the pointer to point to the return address and overwrite
the return address without touching the canary [4].

StackShield [20] and Return Address Defender [5] keep
a copy of the return address in a private location in memory.
The epilogue of a function reads the return address from
this private location rather than from the stack. This method
doesn’t prevent function pointer overwrites and it has been
shown in [4] that it is possible to bypass StackShield under
certain circumstances.

In StackGhost [10], the value of the stack pointer or a
key, is XOR’ed with the return address to encode it on the
stack. The function epilogue decodes the return address.
The existence of other vulnerabilities which allows an at-

tacker to read the contents of the stack, such as a format
string vulnerability [15], makes it easy to find the key and
bypass the protection.

Instruction set randomization [2] uses the idea that when
the attacker doesn’t know the instruction set of the target,
he cannot devise an attack vector that serves the intended
purpose. Instructions are encrypted with a set of random
keys and are decrypted before being fetched and executed
by the processor. This imposes significant memory and per-
formance overhead. It has also been shown that instruc-
tion set randomization can be susceptible to incremental at-
tacks [17].

PaX [14] and Solar Designer [16] implement non-
executable stacks. This technique causes some programs
to break, such as just-in-time compilers which generate and
execute dynamic code. While many new microprocessors
have implemented the necessary hardware support for a
non-executable stack, it is possible to bypass this protec-
tion mechanism by executing existing code on the machine
with attacker-supplied arguments [12].

There are also a number of hardware-based protection
techniques. Dynamic flow information tracking [19] tries
to stop attacks by tagging I/O data as spurious. The con-
trol transfer target can only be non-spurious. Therefore, if
an attacker manages to inject the code into the program’s
space, the code cannot be executed because the system has
received it through an untrusted I/O channel.

Minos [8] is another technique that uses tagging. In Mi-
nos, data created before a timestamp or values from the pro-
gram counter are considered high integrity data. Control
can only be transfered to this type of data.

Two other hardware techniques [13,21] use the Return
Address Stack (RAS) of superscalar processors to check the
return address of functions. Any inconsistency between the
hardware reported address and the address read from the
stack can raise an alarm. However, RAS is a circular LIFO
structure whose entries can be overwritten at any point of
execution. Also, the RAS entries are updated speculatively.
These deficiencies impose major changes to the design of
RAS and the processor to prevent false alarms.

Very recently, researchers have started to look at provid-
ing diversity using simultaneous n-version execution on the
same platform, rather than merely creating diversity across
a network of computers; our method falls into this category.
Cox et al. [7] introduce the idea of running a few varia-
tions of a single program simultaneously. All the variants
perform the same task and produce the exact same results.
This allows detection by looking at all the variants’ results.
Any divergence among the outputs raises alarm and can in-
terrupt the execution. The work by Cox et al. is closely
related to our system, however, their idea doesn’t explicitly
address parallel hardware. Also, unlike our method, their
approach requires modifications to the Linux kernel, which



increases the maintenance effort (and related security risks)
since patches for the original Linux kernel need to be inte-
grated with the modified version.

Berger and Zorn [3] presents a similar idea to detect
memory errors. They use heap object randomization to
make the variants generate different outputs in case of an
error or attack. Their system is a simplified multi-variant
framework. It only works for the applications that read from
standard input and write to standard output. They only mon-
itor the output of variants written to the standard output.

Heap and instruction set randomization have already
been investigated as choices for multi-variant execution. To
our knowledge, reverse stack execution has never been stud-
ied by researchers. In this paper, we propose reverse stack
execution as a new form of variation which can prevent ac-
tivation record overwrites, function pointer overwrites, and
format string attacks when executed in parallel with normal
stack execution in a multi-variant environment.

3 Generating Program Variances

Allowing multi-variant programs to detect malicious
code injection, the variance of each parallel executing in-
stance must guarantee different program behavior when
confronted with an attack vector. Existing techniques for
automatic variance generation such as instruction set ran-
domization and heap object randomization, only vary the
code and the heap, whereas most attack vectors target the
stack.

In this section we describe our compiler-based technique
to vary the program stack by reversing the growth direction.
The direction of stack growth is not flexible in hardware
and almost all processors only support one direction. In
the case of the Intel x86 processor, for example, the stack
always grows downward and all the stack manipulation in-
structions such as PUSH and POP are designed for this nat-
ural downward growth.

To reverse the stack growth direction one could at-
tempt to replace these instructions with a combination of
ADD/SUB and MOV instructions. However, for certain in-
struction formats, it is not be possible to do this transforma-
tion without a scratch register, because certain formats of
the PUSH instruction allow pushing an indirect value that is
fetched from the address specified in the register operand.

For an indirect push of the value at the address in EAX,
the above transformation would produce an invalid form for
the MOV instruction because no instruction in the x86 in-
struction set is allowed to have two indirect operands. In
this case, an indirect operand would be the stack on the des-
tination side, and the load of the indirect value on the source
side:

PUSH (%EAX)

o)

% Incorrect transformation

ADD $4, (%ESP
) (

)
MOV ($EAX SESP)
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It is possible to use temporary place holders to store
and restore indirect values when both operands are indi-
rect. This method has multiple drawbacks: there is an over-
head of writing and reading the temporary location, it com-
plicates compilation, and increases register pressure. Our
solution to this problem uses the same PUSH and POP in-
structions, and adjusts the stack accordingly to compensate
for the value that is automatically added or subtracted to or
from the stack pointer by these instructions:

o)

% correct transformation

ADD $4, (SESP)
PUSH (%EAX)
ADD $4, (SESP)

We have modified the x86 backend of the GNU Compiler
Collection (GCC) to optionally emit reverse stack code. Re-
verse stack compilation can also impact the way applica-
tions communicate with the operating system if system call
arguments are read from the (now reversed) stack. Linux
communicates system call arguments through registers for
most system calls and is thus largely unaffected by changes
to the stack growth direction. For the remaining system
calls that take extra stack arguments we have modified the
C library to properly prepare the stack before issuing the
system calls.

4 Multi-Variant Parallel Execution

During the multi-variant parallel execution of a program,
a monitor is responsible for distributing program input over
all parallel instances, synchronizing the behavior of the par-
allel instances, comparing the state and output of each state
to ensure that no program instances has been corrupted.
This can be achieved at varying granularities, ranging from
a coarse-grained approach that only checks that the final
output of each instance is identical all the way to a (poten-
tially hardware-assisted) checkpointing mechanism that pe-
riodically compares the register and memory state of each
parallel execution unit to ensure that they still execute se-
mantically equivalent instructions in lockstep.

In our prototype system we use coarse-grained monitor-
ing that synchronizes program instances at the granularity
of system calls. Coarse-grained monitoring assumes that
instances are still executing semantically equivalent code as
long each instance calls the same system call with equiva-
lent arguments.
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Figure 1. System calls that change the global
state are executed by the monitor and the re-
sults are communicated to all instances.

If instance A requests 400 bytes to be read from a file, for
example, all other instances are expected to issue the same
request within a certain time window. Once all instances
have arrived at the checkpoint, the underlying file read op-
eration is executed, and a copy of the data is returned to all
instances. In case of write request a similar synchroniza-
tion takes place. The output of all instances is gathered, and
one copy is written to the disk or network socket once all
instances have reached the synchronization point.

In our prototype system we execute several instances
of an application compiled with different compiler settings
(i.e. regular stack and reverse stack). All instances are run
in parallel, and under the control of the monitor using the
host operating system’s process debugging facilities. On
Linux these facilities are powered by ptrace. The advan-
tage of this approach is that our monitor is a regular Linux
process that controls a number of child processes, each of
which runs a diversified instance of the application. The
monitor stops every instance at each system call and com-
pares the system call arguments (see Figure 1, S1 and S1’
must match). System calls that do not change the global
state, e.g. mapping a read-only file into memory, are exe-
cuted in all instances. System calls that do change the global
system state, e.g. receiving network data from a socket, are
executed by the monitor in lieu of the instances of the appli-
cation and the data is then distributed to all instances (Fig-
ure 1, result of S1 is sent to all instances). Thus we hide
from the application the fact that it is executed as multiple
parallel instances, and no changes are required to the appli-
cation code.

Coarse-grained monitoring is highly efficient, because
synchronization and monitoring only happens during sys-
tem calls, and the same time, it thwarts a large subset of

code injection attacks.

In order to defeat our technique, an attacker would need
to devise multiple separate attack vectors that not only sub-
vert all the variants without causing “collateral” damage to
the respective other ones, but also perform the same mali-
cious operations in sync afterwards. Since any attack vec-
tor requires some I/O, which implies a system call, an at-
tacker would not be able to subvert all variants in sequence
without passing a checkpoint in between. Hence, the first
subverted variant would need to emulate “correct” opera-
tion until other ones had been subverted as well, and even
afterwards, the malicious versions would need to be syn-
chronized. Not only it is very unlikely that one separate
exploitable vulnerability exists for each variant, but also the
complexity of creating an exploit that respects all other pa-
rameters of our system is extremely high.

5 Benchmarks

To evaluate our prototype system, we performed a num-
ber of tests and benchmarks. All benchmarks were run on
a 2.33 GHz Dual Processor Dual Core Xeon (5140) system
running Redhat Enterprise Linux 4 and Linux kernel 2.6.9-
55.0.6.ELsmp.

5.1 Security

To demonstrate that our system can detect and stop
stack-based buffer-overflow attacks we compiled Apache
1.3.29 with our variance generating compiler and ran it on
our monitor platform. Apache 1.3.29 is an outdated version
of the popular open-source web server. It has a number of
known vulnerabilities, including an off-by-one vulnerabil-
ity in mod_rewrite first reported on July 28, 2006 [9]. Using
the published exploit code [1] we can compromise Apache
1.3.29 when compiled with the original GCC compiler and
not running under our platform. The exploit injects code
into the Apache process which opens a local port for incom-
ing connections and binds a shell process to it. An attacker
can connect to this port and access the system.

When compiled with two different stack growth direc-
tions using our modified GCC compiler and running under
our parallel execution monitor, two processes execute the
Apache application in parallel. When the exploit code is
injected into the system, it is distributed to both processes.
In the process with the regular stack growth direction the
code injection immediately succeeds and the exploit code
takes control and issues a system call to open a local port
for incoming network connections. The process running
the Apache instance compiled with reverse stack growth be-
haves differently. Since it has a different stack layout, the
exploit code overwrites data on the stack but cannot actually



replace the return address on the stack which would be nec-
essary to trigger the exploit code. Thus, this instance does
not execute the same system call to open a local port but in-
stead performs an illegal memory access. The monitor ap-
plication observes that the two instances start to diverge and
aborts both, effectively closing the vulnerability. It is impor-
tant to note that we did not modify the vulnerable Apache
code to close this code injection vector. While in case of
our experiment we knew about the location of the vulner-
ability, this is not necessary for our system and thus we
can equally protect against such known stack-based buffer-
overflow vulnerabilities as we can protect against yet-not-
found vulnerabilities in the current up-to-date version of
Apache.

We also tested a few other known vulnerabilities in
Apache, and our system was able to catch all the attacks,
but the space constraints don’t allow us to explain them.

5.2 Performance

The security benefit of our multi-variant execution ap-
proach does not come entirely for free. Applications run
under our framework incur a performance overhead. This
overhead results on the one hand from the stack reversal it-
self, and on the other hand an additional runtime overhead
is introduced by running instances in parallel and synchro-
nizing them at every system call.

In order to take advantage of GCC optimizations, our
compiler modifications occur at the RTL level. Conse-
quently, we can generate reverse stack executables for mul-
tiple programming languages supported by the GCC front-
end. However, we have not attempted to port a FORTRAN
or C++ library for reverse stack execution, because this is
mainly an engineering effort without any major scientific
insights. As a result, we need to exclude FORTRAN and
C++ benchmarks for the purpose of this evaluation. Each
benchmark application in SPEC CPU 2000 [18] was com-
piled in two versions: using the unmodified x86 backend,
and using the reverse-stack x86 backend. We compare the
execution time of the original x86 code running as a single
instance against the runtime of two variants (regular and re-
verse stack growth) running in parallel and synchronized by
our monitoring layer.

The results for the SPEC CPU 2000 benchmark are
shown in Figure 2. The slowdown for multi-variant paral-
lel execution is less than 10% on average, and a maximum
of 30% in case of equake. In equake the performance loss
is caused in part by the saturation of the physical memory
bus since equake is a memory-intensive benchmark. vortex
and apache issue a large number of system calls during their
execution. These system calls have to be intercepted, syn-
chronized, and supervised by the monitor, which obviously
impose some overhead.
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Figure 2. Overhead of executing two vari-
ants of a program in parallel using our moni-
tor. To show the impact of stack reversal we
measured the overhead for both, executing
two instances with regular downward stack
growth (DD), and actual multi-variant execu-
tion with two instances with opposite stack
growth directions (DU).

The impact of the memory bandwidth on the execution
is generally very small. This is mainly due to the existence
of a large shared level two cache on the processor die that
minimizes the need to refer to the main memory.

We used Apache 1.3.29 to measure the overhead for I/O
intensive applications. For two parallel variant instances
Apache serves pages at 80% of the throughput, and for four
parallel instances at 61% of the original throughput (See
Figure 3). Such additional instances can be used with addi-
tional variance methods to further increase security, in par-
ticular with respect to non-stack based code injection.

6 Conclusions

We have presented a novel use for multi-core system that
uses parallel resources to address security vulnerabilities:
multi-variant execution of applications. By executing mul-
tiple variants of an application we can detect attempted ex-
ploitations of vulnerabilities. For this to be successful, the
variants have to react differently to the attack vector. Us-
ing a real-world web server application we demonstrated
that stack-based buffer-overflow attacks can be detected by
varying the stack growth direction. We also described our
parallel execution monitor which uses the operating sys-
tem’s debugging facilities to run variants as child processes.
At each system call the child processes are forced to stop
and the monitor compares their states. If the child processes
diverge execution is aborted.
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Figure 3. Overhead of running Apache 1.3.29
using reverse-stack growth (single thread),
and multi-variant parallel execution of 2 and 4
instances. The benchmark measures the per-
formance for responding to 10000 sequen-
tial HTTP requests relative to an unmodified
Apache instance.

Our work has three main contributions. First, we have
presented the first viable and complete multi-variant execu-
tion system. In contrast to previous work our system can
detect and stop actual real-world vulnerabilities instead of
merely hinting towards the possibility of doing so. Sec-
ond, we have introduced a variance generation method that
generates appropriate variance to detect stack-based buffer-
overflow vulnerabilities whereas existing works tradition-
ally focused on heap variance. And third, we proposed a
new method of building parallel execution monitors that
doesn’t require changes to the operating system. Instead,
the parallel execution monitor becomes a regular unprivi-
leged user space application, reducing the risk caused by
potential errors in the monitor itself.
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